3,729 research outputs found

    Thermodynamic curvature measures interactions

    Full text link
    Thermodynamic fluctuation theory originated with Einstein who inverted the relation S=kBlnΩS=k_B\ln\Omega to express the number of states in terms of entropy: Ω=exp(S/kB)\Omega= \exp(S/k_B). The theory's Gaussian approximation is discussed in most statistical mechanics texts. I review work showing how to go beyond the Gaussian approximation by adding covariance, conservation, and consistency. This generalization leads to a fundamentally new object: the thermodynamic Riemannian curvature scalar RR, a thermodynamic invariant. I argue that R|R| is related to the correlation length and suggest that the sign of RR corresponds to whether the interparticle interactions are effectively attractive or repulsive.Comment: 29 pages, 7 figures (added reference 27

    Whole genome transcriptome polymorphisms in Arabidopsis thaliana

    Get PDF
    New methods for detecting global patterns of gene expression and splicing variation in natural Arabidopsis thaliana populations

    Stratigraphy around the Cretaceous-Paleogene boundary in sediment cores from the Lord Howe Rise, Southwest Pacific

    Get PDF
    During Deep Sea Drilling Project (DSDP) Leg 21, Cenozoic and latest Cretaceous sediments were recovered at Site 208 on the Lord Howe Rise, Southwest Pacific. We provide new biostratigraphic, magnetostratigraphic and chemostratigraphic data from Site 208 to constrain the stratigraphy around the Cretaceous-Paleogene (K-Pg) boundary and to determine the depth of the K-Pg boundary more precisely. Biostratigraphic data from calcareous nannofossils indicate a near-continuous succession of sediments from the mid-Maastrichtian (Late Cretaceous) to lowermost Thanetian (Paleocene) at depths of 540−590 m below seafloor (mbsf). The biostratigraphic data suggest that the K-Pg boundary corresponds to a siliceous claystone at the base of an interval of silicified sediments (576.0−576.8 mbsf). Carbonate carbon isotopic composition (δ^{13}_{Ccarb}) reveals a negative shift across this interval, which is consistent with global patterns of δ^{13}C across the K-Pg boundary. Osmium concentration and Os isotopic composition ({187}^Os/{188}^Os) can also be used to identify the K-Pg boundary interval, as it is marked by a peak in Os concentration and a drop in 187^{Os}/{188}^Os values to 0.12−0.15, both of which are the result of the Chicxulub impact event. Our {187}^Os/{188}^Os data show trends similar to those of coeval global seawater with the lowest value of 0.12−0.16 in the siliceous claystone (576.8 mbsf). However, the concentration of Os is low (<80 pg g^{−1}) in this sample, which suggests that this siliceous claystone was deposited around the K-Pg boundary but may not include the boundary itself. Although the sedimentary record across the K-Pg interval at Site 208 may not be completely continuous, it nevertheless captures a time interval that is close to the Chicxulub impact event

    Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory

    Get PDF
    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7±0.6)×106I_{\mu} = (5.7 \pm 0.6) \times 10^{-6} cm2^{-2}s1^{-1}sr1^{-1}. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19±0.08(stat)±0.21(syst))×104Y_{n} = (1.19 \pm 0.08 (stat) \pm 0.21 (syst)) \times 10^{-4} neutrons/(μ\mu\cdotg\cdotcm2^{-2}). A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of Eμ0.76±0.03\left\langle E_{\mu} \right\rangle^{0.76 \pm 0.03} for liquid-scintillator targets.Comment: 14 pages, 17 figures, 3 table

    Study of the Baryon-Antibaryon Low-Mass Enhancements in Charmless Three-body Baryonic B Decays

    Full text link
    The angular distributions of the baryon-antibaryon low-mass enhancements seen in the charmless three-body baryonic B decays B+ -> p pbar K+, B0 -> p pbar Ks, and B0 -> p Lambdabar pi- are reported. A quark fragmentation interpretation is supported, while the gluonic resonance picture is disfavored. Searches for the Theta+ and Theta++ pentaquarks in the relevant decay modes and possible glueball states G with 2.2 GeV/c2 < M-ppbar < 2.4 GeV/c2 in the ppbar systems give null results. We set upper limits on the products of branching fractions, B(B0 -> Theta+ p)\times B(Theta+ -> p Ks) Theta++ pbar) \times B(Theta++ -> p K+) G K+) \times B(G -> p pbar) < 4.1 \times 10^{-7} at the 90% confidence level. The analysis is based on a 140 fb^{-1} data sample recorded on the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider.Comment: 14 pages, 13 figure files, update of hep-ex/0409010 for journal submisssio

    Search for the decay KL03γK_L^0 \rightarrow 3\gamma

    Full text link
    We performed a search for the decay KL03γK_L^0 \rightarrow 3\gamma with the E391a detector at KEK. In the data accumulated in 2005, no event was observed in the signal region. Based on the assumption of KL03γK_L^0 \rightarrow 3\gamma proceeding via parity-violation, we obtained the single event sensitivity to be (3.23±0.14)×108(3.23\pm0.14)\times10^{-8}, and set an upper limit on the branching ratio to be 7.4×1087.4\times10^{-8} at the 90% confidence level. This is a factor of 3.2 improvement compared to the previous results. The results of KL03γK_L^0 \rightarrow 3\gamma proceeding via parity-conservation were also presented in this paper

    Long-lived neutral-kaon flux measurement for the KOTO experiment

    Get PDF
    The KOTO (K0K^0 at Tokai) experiment aims to observe the CP-violating rare decay KLπ0ννˉK_L \rightarrow \pi^0 \nu \bar{\nu} by using a long-lived neutral-kaon beam produced by the 30 GeV proton beam at the Japan Proton Accelerator Research Complex. The KLK_L flux is an essential parameter for the measurement of the branching fraction. Three KLK_L neutral decay modes, KL3π0K_L \rightarrow 3\pi^0, KL2π0K_L \rightarrow 2\pi^0, and KL2γK_L \rightarrow 2\gamma were used to measure the KLK_L flux in the beam line in the 2013 KOTO engineering run. A Monte Carlo simulation was used to estimate the detector acceptance for these decays. Agreement was found between the simulation model and the experimental data, and the remaining systematic uncertainty was estimated at the 1.4\% level. The KLK_L flux was measured as (4.183±0.017stat.±0.059sys.)×107(4.183 \pm 0.017_{\mathrm{stat.}} \pm 0.059_{\mathrm{sys.}}) \times 10^7 KLK_L per 2×10142\times 10^{14} protons on a 66-mm-long Au target.Comment: 27 pages, 16 figures. To be appeared in Progress of Theoretical and Experimental Physic

    Origin of Ferromagnetism in nitrogen embedded ZnO:N thin films

    Full text link
    Nitrogen embedded ZnO:N films prepared by pulsed laser deposition exhibit significant ferromagnetism. The nitrogen ions contained in ZnO confirmed by Secondary Ion Microscopic Spectrum and Raman experiments and the embedded nitrogen ions can be regarded as defects. According to the experiment results, a mechanism is proposed based on one of the electrons in the completely filled d-orbits of Zn that compensates the dangling bonds of nitrogen ions and leads to a net spin of one half in the Zn orbits. These one half spins strongly correlate with localized electrons that are captured by defects to form ferromagnetism. Eventually, the magnetism of nitrogen embedded ZnO:N films could be described by a bound magnetic polaron model.Comment: 7 pages, 6 figure
    corecore