107,396 research outputs found
Dynamics of multiply charged ions in intense laser fields
We numerically investigate the dynamics of multiply charged hydrogenic ions
in near-optical linearly polarized laser fields with intensities of order 10^16
to 10^17 W/cm^2. Depending on the charge state Z of the ion the relation of
strength between laser field and ionic core changes. We find around Z=12
typical multiphoton dynamics and for Z=3 tunneling behaviour, however with
clear relativistic signatures. In first order in v/c the magnetic field
component of the laser field induces a Z-dependent drift in the laser
propagation direction and a substantial Z-dependent angular momentum with
repect to the ionic core. While spin oscillations occur already in first order
in v/c as described by the Pauli equation, spin induced forces via spin orbit
coupling only appear in the parameter regime where (v/c)^2 corrections are
significant. In this regime for Z=12 ions we show strong splittings of resonant
spectral lines due to spin-orbit coupling and substantial corrections to the
conventional Stark shift due to the relativistic mass shift while those to the
Darwin term are shown to be small. For smaller charges or higher laser
intensities, parts of the electronic wavepacket may tunnel through the
potential barrier of the ionic core, and when recombining are shown to give
rise to keV harmonics in the radiation spectrum. Some parts of the wavepacket
do not recombine after ionisation and we find very energetic electrons in the
weakly relativistic regime of above threshold ionization.Comment: submitte
Nonequilibrium Phase Transitions of Vortex Matter in Three-Dimensional Layered Superconductors
Large-scale simulations on three-dimensional (3D) frustrated anisotropic XY
model have been performed to study the nonequilibrium phase transitions of
vortex matter in weak random pinning potential in layered superconductors. The
first-order phase transition from the moving Bragg glass to the moving smectic
is clarified, based on thermodynamic quantities. A washboard noise is observed
in the moving Bragg glass in 3D simulations for the first time. It is found
that the activation of the vortex loops play the dominant role in the dynamical
melting at high drive.Comment: 3 pages,5 figure
Semantic modelling of learning objects and instruction
We introduce an ontology-based semantic modelling framework that addresses subject domain modelling, instruction modelling, and interoperability aspects in the development of complex reusable learning objects. Ontologies are knowledge representation frameworks, ideally suited to support knowledge-based modelling of these learning objects. We illustrate the benefits of semantic modelling for learning object assemblies within the context of standards such as SCORM Sequencing and Navigation and Learning Object Metadata
Exotic Topological States with Raman-Induced Spin-Orbit Coupling
We propose a simple experimental scheme to realize simultaneously the
one-dimensional spin-orbit coupling and the staggered spin-flip in ultracold
pseudospin- atomic Fermi gases trapped in square optical lattices. In the
absence of interspecies interactions, the system supports gapped Chern
insulators and gapless topological semimetal states. By turning on the -wave
interactions, a rich variety of gapped and gapless inhomogeneous topological
superfluids can emerge. In particular, a gapped topological Fulde-Ferrell
superfluid, in which the chiral edge states at opposite boundaries possess the
same chirality, is predicted.Comment: 11 pages, 6 figure
Polynomial loss of memory for maps of the interval with a neutral fixed point
We give an example of a sequential dynamical system consisting of
intermittent-type maps which exhibits loss of memory with a polynomial rate of
decay. A uniform bound holds for the upper rate of memory loss. The maps may be
chosen in any sequence, and the bound holds for all compositions.Comment: 16 page
- âŠ