19,128 research outputs found

    The first-mover advantage in scientific publication

    Full text link
    Mathematical models of the scientific citation process predict a strong "first-mover" effect under which the first papers in a field will, essentially regardless of content, receive citations at a rate enormously higher than papers published later. Moreover papers are expected to retain this advantage in perpetuity -- they should receive more citations indefinitely, no matter how many other papers are published after them. We test this conjecture against data from a selection of fields and in several cases find a first-mover effect of a magnitude similar to that predicted by the theory. Were we wearing our cynical hat today, we might say that the scientist who wants to become famous is better off -- by a wide margin -- writing a modest paper in next year's hottest field than an outstanding paper in this year's. On the other hand, there are some papers, albeit only a small fraction, that buck the trend and attract significantly more citations than theory predicts despite having relatively late publication dates. We suggest that papers of this kind, though they often receive comparatively few citations overall, are probably worthy of our attention.Comment: 7 pages, 3 figure

    CSO validator: improving manual curation workflow for biological pathways

    Get PDF
    Summary: Manual curation and validation of large-scale biological pathways are required to obtain high-quality pathway databases. In a typical curation process, model validation and model update based on appropriate feedback are repeated and requires considerable cooperation of scientists. We have developed a CSO (Cell System Ontology) validator to reduce the repetition and time during the curation process. This tool assists in quickly obtaining agreement among curators and domain experts and in providing a consistent and accurate pathway database

    Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals

    Full text link
    The quasi-unit cell picture describes the atomic structure of quasicrystals in terms of a single, repeating cluster which overlaps neighbors according to specific overlap rules. In this paper, we discuss the precise relationship between a general atomic decoration in the quasi-unit cell picture atomic decorations in the Penrose tiling and in related tiling pictures. Using these relations, we obtain a simple, practical method for determining the density, stoichiometry and symmetry of a quasicrystal based on the atomic decoration of the quasi-unit cell taking proper account of the sharing of atoms between clusters.Comment: 14 pages, 8 figure

    Determination of αs\alpha_s from Gross-Llewellyn Smith sum rule by accounting for infrared renormalon

    Full text link
    We recapitulate the method which resums the truncated perturbation series of a physical observable in a way which takes into account the structure of the leading infrared renormalon. We apply the method to the Gross-Llewellyn Smith (GLS) sum rule. By confronting the obtained result with the experimentally extracted GLS value, we determine the value of the QCD coupling parameter which turns out to agree with the present world average.Comment: invited talk by G.C. in WG3 of NuFact02, July 1-6, 2002, London; 4 pages, revte

    Breakdown of metastable step-flow growth on vicinal surfaces induced by nucleation

    Full text link
    We consider the growth of a vicinal crystal surface in the presence of a step-edge barrier. For any value of the barrier strength, measured by the length l_es, nucleation of islands on terraces is always able to destroy asymptotically step-flow growth. The breakdown of the metastable step-flow occurs through the formation of a mound of critical width proportional to L_c=1/sqrt(l_es), the length associated to the linear instability of a high-symmetry surface. The time required for the destabilization grows exponentially with L_c. Thermal detachment from steps or islands, or a steeper slope increase the instability time but do not modify the above picture, nor change L_c significantly. Standard continuum theories cannot be used to evaluate the activation energy of the critical mound and the instability time. The dynamics of a mound can be described as a one dimensional random walk for its height k: attaining the critical height (i.e. the critical size) means that the probability to grow (k->k+1) becomes larger than the probability for the mound to shrink (k->k-1). Thermal detachment induces correlations in the random walk, otherwise absent.Comment: 10 pages. Minor changes. Accepted for publication in Phys. Rev.

    Growing Perfect Decagonal Quasicrystals by Local Rules

    Full text link
    A local growth algorithm for a decagonal quasicrystal is presented. We show that a perfect Penrose tiling (PPT) layer can be grown on a decapod tiling layer by a three dimensional (3D) local rule growth. Once a PPT layer begins to form on the upper layer, successive 2D PPT layers can be added on top resulting in a perfect decagonal quasicrystalline structure in bulk with a point defect only on the bottom surface layer. Our growth rule shows that an ideal quasicrystal structure can be constructed by a local growth algorithm in 3D, contrary to the necessity of non-local information for a 2D PPT growth.Comment: 4pages, 2figure

    Purification and detection of entangled coherent states

    Full text link
    In [J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000)], a proposal is made to generate entangled macroscopically distinguishable states of two spatially separated traveling optical modes. We model the decoherence due to light scattering during the propagation along an optical transmission line and propose a setup allowing an entanglement purification from a number of preparations which are partially decohered due to transmission. A purification is achieved even without any manual intervention. We consider a nondemolition configuration to measure the purity of the state as contrast of interference fringes in a double-slit setup. Regarding the entangled coherent states as a state of a bipartite quantum system, a close relationship between purity and entanglement of formation can be obtained. In this way, the contrast of interference fringes provides a direct means to measure entanglement.Comment: 9 pages, 6 figures, using Revtex

    Generating a Schr\"odinger-cat-like state via a coherent superposition of photonic operations

    Get PDF
    We propose an optical scheme to generate a superposition of coherent states with enhanced size adopting an interferometric setting at the single-photon level currently available in the laboratory. Our scheme employs a nondegenerate optical parametric amplifier together with two beam splitters so that the detection of single photons at the output conditionally implements the desired superposition of second-order photonic operations. We analyze our proposed scheme by considering realistic on-off photodetectors with nonideal efficiency in heralding the success of conditional events. A high-quality performance of our scheme is demonstrated in view of various criteria such as quantum fidelity, mean output energy, and measure of quantum interference
    corecore