73,835 research outputs found

    Emergentism and musicology: an alternative perspective to the understanding of dissonance.

    Get PDF
    In this paper we develop an approach to musicology within the discussion of emergentism. First of all, we claim that some theories of musicology could be insufficient in describing and explaining musical phenomena when emergent properties are not taken into account. Actually, musicology usually considers just syntactical elements, structures and processes and puts only a little emphasis, if any, over perceptual aspects of human hearing. On the other hand, recent research efforts are currently being directed towards an understanding of the emergent properties of auditory perception, especially in fields such as cognitive science. Such research leads to other views concerning old issues in musicology and could create a fruitful approach, filling the gap between musicology and auditory perception

    Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation

    Get PDF
    ©1999 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?JCPSA6/111/1255/1DOI: 10.1063/1.479310Electron dynamics in gold nanoparticles with an average diameter between 9 and 48 nm have been studied by femtosecond transient absorption spectroscopy. Following the plasmon bleach recovery after low power excitation indicates that a non-Fermi electron distribution thermalizes by electron–electron relaxation on a time scale of 500 fs to a Fermi distribution. This effect is only observed at low excitation power and when the electron distribution is perturbed by mixing with the intraband transitions within the conduction band (i.e., when the excitation wavelength is 630 or 800 nm). However, exciting the interband transitions at 400 nm does not allow following the early electron thermalization process. Electron thermalization with the lattice of the nanoparticle by electron–phonon interactions occurs within 1.7 ps under these conditions, independent of the excitation wavelength. In agreement with the experiments, simulations of the optical response arising from thermalized and nonthermalized electron distributions show that a non-Fermi electron distribution leads to a less intense bleach of the plasmon absorption. Furthermore, the difference between the response from the two electron distributions is greater for small temperature changes of the electron gas (low excitation powers). No size dependence of the electron thermalization dynamics is observed for gold nanoparticles with diameters between 9 and 48 nm. High-resolution transmission electron microscopy (HRTEM) reveals that these gold nanoparticles possess defect structures. The effect of this on the electron–phonon relaxation processes is discussed. 18 nm gold–silver alloy nanoparticles with a gold mole fraction of 0.8 are compared to 15 nm gold nanoparticles. While mixing silver leads to a blue-shift of the plasmon absorption in the ground-state absorption spectrum, no difference is observed in the femtosecond dynamics of the system

    The role of thermal and lubricant boundary layers in the transient thermal analysis of spur gears

    Get PDF
    An improved convection heat-transfer model has been developed for the prediction of the transient tooth surface temperature of spur gears. The dissipative quality of the lubricating fluid is shown to be limited to the capacity extent of the thermal boundary layer. This phenomenon can be of significance in the determination of the thermal limit of gears accelerating to the point where gear scoring occurs. Steady-state temperature prediction is improved considerably through the use of a variable integration time step that substantially reduces computer time. Computer-generated plots of temperature contours enable the user to animate the propagation of the thermal wave as the gears come into and out of contact, thus contributing to better understanding of this complex problem. This model has a much better capability at predicting gear-tooth temperatures than previous models

    Interaction of Phonons and Dirac Fermions on the Surface of Bi2Se3: A Strong Kohn Anomaly

    Full text link
    We report the first measurements of phonon dispersion curves on the (001) surface of the strong three-dimensional topological insulator Bi2Se3. The surface phonon measurements were carried out with the aid of coherent helium beam surface scattering techniques. The results reveal a prominent signature of the exotic metallic Dirac fermion quasi-particles, including a strong Kohn anomaly. The signature is manifest in a low energy isotropic convex dispersive surface phonon branch with a frequency maximum of 1.8 THz, and having a V-shaped minimum at approximately 2kF that defines the Kohn anomaly. Theoretical analysis attributes this dispersive profile to the renormalization of the surface phonon excitations by the surface Dirac fermions. The contribution of the Dirac fermions to this renormalization is derived in terms of a Coulomb-type perturbation model

    Equation of state for dense supernova matter

    Full text link
    We provide an equation of state for high density supernova matter by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter containing leptons (electrons and neutrinos) under the chemical equilibrium condition. The conditions of charge neutrality and equilibrium under β\beta-decay process lead first to the evaluation of the lepton fractions and afterwards the evaluation of internal energy, pressure, entropy and in total to the equation of state of hot nuclear matter for various isothermal cases. Thermal effects on the properties and equation of state of nuclear matter are evaluated and analyzed in the framework of the proposed effective interaction model. Since supernova matter is characterized by a constant entropy we also present the thermodynamic properties for isentropic case. Special attention is dedicated to the study of the contribution of the components of β\beta-stable nuclear matter to the entropy per particle, a quantity of great interest for the study of structure and collapse of supernova.Comment: 23 pages, 15 figure

    How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse

    Get PDF
    Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model

    The revival-collapse phenomenon in the quadrature field components of the two-mode multiphoton Jaynes-Cummings model

    Full text link
    In this paper we consider a system consisting of a two-level atom in an excited state interacting with two modes of a radiation field prepared initially in ll-photon coherent states. This system is described by two-mode multiphoton (, i.e., k1,k2k_1, k_2) Jaynes-Cummings model (JCM). For this system we investigate the occurrence of the revival-collapse phenomenon (RCP) in the evolution of the single-mode, two-mode, sum and difference quadrature squeezing. We show that there is a class of states for which all these types of squeezing exhibit RCP similar to that involved in the corresponding atomic inversion. Also we show numerically that the single-mode squeezing of the first mode for (k1,k2)=(3,1)(k_1,k_2)=(3,1) provides RCP similar to that of the atomic inversion of the case (k1,k2)=(1,1)(k_1,k_2)=(1,1), however, sum and difference squeezing give partial information on that case. Moreover, we show that single-mode, two-mode and sum squeezing for the case (k1,k2)=(2,2)(k_1,k_2)=(2,2) provide information on the atomic inversion of the single-mode two-photon JCM. We derive the rescaled squeezing factors giving accurate information on the atomic inversion for all cases. The consequences of these results are that the homodyne and heterodyne detectors can be used to detect the RCP for the two-mode JCM.Comment: 18 pages, 6 figure

    Merging fragments of classical logic

    Full text link
    We investigate the possibility of extending the non-functionally complete logic of a collection of Boolean connectives by the addition of further Boolean connectives that make the resulting set of connectives functionally complete. More precisely, we will be interested in checking whether an axiomatization for Classical Propositional Logic may be produced by merging Hilbert-style calculi for two disjoint incomplete fragments of it. We will prove that the answer to that problem is a negative one, unless one of the components includes only top-like connectives.Comment: submitted to FroCoS 201

    Massive Increase, Spread, and Exchange of Extended Spectrum {beta}-Lactamase-Encoding Genes Among Intestinal Enterobacteriaceae in Hospitalized Children With Severe Acute Malnutrition in Niger.

    Get PDF
    Background. From the time of CTX-M emergence, extended-spectrum β-lactamase-producing enterobacteria (ESBL-E) have spread worldwide in community settings as well as in hospitals, particularly in developing countries. Although their dissemination appears linked to Escherichia coli intestinal carriage, precise paths of this dynamic are largely unknown. Methods. Children from a pediatric renutrition center were prospectively enrolled in a fecal carriage study. Antibiotic exposure was recorded. ESBL-E strains were isolated using selective media from fecal samples obtained at admission and, when negative, also at discharge. ESBL-encoding genes were identified, their environments and plasmids were characterized, and clonality was assessed with polymerase chain reaction-based methods and pulsed-field gel electrophoresis for E. coli and Klebsiella pneumoniae. E. coli strains were subjected to multilocus sequence typing. Results. The ESBL-E carriage rate was 31% at admission in the 55 children enrolled. All children enrolled received antibiotics during hospitalization. Among the ESBL-E-negative children, 16 were resampled at discharge, and the acquisition rate was 94%. The bla(CTX-M-15) gene was found in >90% of the carriers. Genetic environments and plasmid characterization evidenced the roles of a worldwide, previously described, multidrug-resistant region and of IncF plasmids in CTX-M-15 E. coli dissemination. Diversity of CTX-M-15-carrying genetic structures and clonality of acquired ESBL E. coli suggested horizontal genetic transfer and underlined the potential of some ST types for nosocomial cross-transmission. Conclusions. Cross-transmission and high selective pressure lead to very high acquisition of ESBL-E carriage, contributing to dissemination in the community. Strict hygiene measures as well as careful balancing of benefit-risk ratio of current antibiotic policies need to be reevaluated
    • …
    corecore