4,181 research outputs found
Artificial Seed Production from Encapsulated Microshoots of Cauliflower (Brassica oleraceae var botrytis)
A cost effective protocol for the production of cauliflower microshoots suitable for encapsulation was designed. Microshoots were encapsulated in sodium chloride matrices. The use of 2% of sodium alginate and 15 g/L of dehydrate calcium chloride produced the optimal quality of artificial seeds (rigidity, conversion rate and viability). Of the various plant growth regulator combinations used with the microshoot liquid culture medium, the use of 1 mg/L of IBA (indole butyric acid) and 1 mg/L Kinetin was found to be optimal in terms of the conversion rate and viability of artificial seeds. To standardize a medium composition of artificial endosperm of synthetic seeds, different concentrations and combinations of plant growth regulators with S23 (4.4 MS + 30 g/L sucrose) medium were used in the beads to achieve optimum conversion rate and viability on an in-vitro medium. Whilst several combinations of plant growth regulators gave a conversion rate up to 100% (for example (0.5 mg/L Kinetin + 0.5 mg/L IBA), (1 mg/L Kinetin + 0.5 mg/L NAA (naphthaleneacetic acid)) and (1 mg/L Kinetin + 1 mg/L IAA (indole-3-acetic acid)), no significant effect on the viability of artificial seeds was found when these combinations were used. Artificial seeds were cultivated in a semi-solid medium containing several types and concentrations of auxin, 2 mg/L of IBA gave the best results in terms of artificial seed viability. However, artificial seed conversion rate was not significantly affected by the auxins and full conversion rate was obtained using many different treatments. This research indicated the feasibility of using artificial seeds as a promising alternative to seeds produced by traditional methodology
Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat.
Wheat is able to cold acclimate in response to low temperatures and thereby increase its frost tolerance and the extent of this acclimation is greater in winter genotypes compared to spring genotypes. Such up-regulation of frost tolerance is controlled by Cbf transcription factors. Molybdenum (Mo) application has been shown to enhance frost tolerance of wheat and this study aimed to investigate the effect of Mo on the development of frost tolerance in winter and spring wheat. Results showed that Mo treatment increased the expression of Cbf14 in wheat under non-acclimating condition but did not alter frost tolerance. However, when Mo was applied in conjunction with exposure of plants to low temperature, Mo increased the expression of Cbf14 and enhanced frost tolerance in both spring and winter genotypes but the effect was more pronounced in the winter genotype. It was concluded that the application of Mo could be useful in situations where enhanced frost resistance is required. Further studies are proposed to elucidate the effect of exogenous of applications of Mo on frost resistance in spring and winter wheat at different growth stages
Quantum transport in topological semimetals under magnetic fields
published_or_final_versio
Recommended from our members
The Rumsfeld Effect: The unknown unknown
A set of studies tested whether people can use awareness of ignorance to provide enhanced test consistency over time if they are allowed to place uncertain items into a “don’t know” category. For factual knowledge this did occur, but for a range of other forms of knowledge relating to conceptual knowledge and personal identity, no such effect was seen. Known unknowns would appear to be largely restricted to factual kinds of knowledge
Recommended from our members
Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures
A key feature of two-dimensional materials is that the sign and concentration of their carriers can be externally controlled with techniques such as electrostatic gating. However, conventional electrostatic gating has limitations, including a maximum carrier density set by the dielectric breakdown, and ionic liquid gating and direct chemical doping also suffer from drawbacks. Here, we show that an electron-beam-induced doping technique can be used to reversibly write high-resolution doping patterns in hexagonal boron nitride-encapsulated graphene and molybdenum disulfide (MoS2) van der Waals heterostructures. The doped MoS2 device exhibits an order of magnitude decrease of subthreshold swing compared with the device before doping, whereas the doped graphene devices demonstrate a previously inaccessible regime of high carrier concentration and high mobility, even at room temperature. We also show that the approach can be used to write high-quality p–n junctions and nanoscale doping patterns, illustrating that the technique can create nanoscale circuitry in van der Waals heterostructures
A Systems View of the Differences between APOE ε4 Carriers and Non-carriers in Alzheimer's Disease
APOE ε4 is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and accounts for 50-65% of late-onset AD. Late-onset AD patients carrying or not carrying APOE ε4 manifest many clinico-pathological distinctions. Thus, we applied a weighted gene co-expression network analysis to identify specific co-expression modules in AD based on APOE ε4 stratification. Two specific modules were identified in AD APOE ε4 carriers and one module was identified in non-carriers. The hub genes of one module of AD APOE ε4 carriers were ISOC1, ENO3, GDF10, GNB3, XPO4, ACLY and MATN2. The other module of AD APOE ε4 carriers consisted of 10 hub genes including ANO3, ARPP21, HPCA, RASD2, PCP4 and ADORA2A. The module of AD APOE ε4 non-carriers consisted of 16 hub genes including DUSP5, TNFRSF18, ZNF331, DNAJB5 and RIN1. The module of AD APOE ε4 carriers including ISOC1 and ENO3 and the module of non-carriers contained the most highly connected hub gene clusters. mRNA expression of the genes in the cluster of the ISOC1 and ENO3 module of carriers was shown to be correlated in a time-dependent manner under APOE ε4 treatment but not under APOE ε3 treatment. In contrast, mRNA expression of the genes in the cluster of non-carriers' module was correlated under APOE ε3 treatment but not under APOE ε4 treatment. The modules of carriers demonstrated genetic bases and were mainly enriched in hereditary disorders and neurological diseases, energy metabolism-associated signaling and G protein-coupled receptor-associated pathways. The module including ISOC1 and ENO3 harbored two conserved promoter motifs in its hub gene cluster that could be regulated by common transcription factors and miRNAs. The module of non-carriers was mainly enriched in neurological, immunological and cardiovascular diseases and was correlated with Parkinson's disease. These data demonstrate that AD in APOE ε4 carriers involves more genetic factors and particular biological processes, whereas AD in APOE ε4 non-carriers shares more common pathways with other types of diseases. The study reveals differential genetic bases and pathogenic and pathological processes between carriers and non-carriers, providing new insight into the mechanisms of the differences between APOE ε4 carriers and non-carriers in AD.published_or_final_versio
The reduced incidence of respiratory viral infections in transplant recipients during the COVID-19 pandemic – A retrospective observational cross-sectional analysis of admissions to a tertiary haematology unit
This study examines the prevalence of respiratory viral infections (RVIs) in transplant recipients during the COVID-19 pandemic. Patients were admitted to a regional haematology unit (RHU) in England which provides a tertiary referral service for haematological malignancy, stem cell transplantation, CAR-T therapy, thrombosis, haemostasis and haemoglobinopathies. Weekly screening for RVIs was conducted on all inpatients in the RHU wards, and data were collected retrospectively for all admissions from August 2018 to February 2021. There was a significant drop in the circulation of non-SARS-CoV-2 RVIs in transplant recipients during the COVID-19 pandemic. The most common viral pathogen in the transplant cohort was rhinovirus, followed by parainfluenza 3, adenovirus, and RSV. The study also highlights the importance of infection prevention and control measures to reduce the risk of nosocomial transmission of RVIs and SARS-CoV-2 in transplant recipients. Further studies are needed to observe whether this effect is pronounced in multiple transplant centres
Lens epithelial cell apoptosis and intracellular Ca(2+) increase in the presence of xanthurenic acid
BACKGROUND: Xanthurenic acid is an endogenous product of tryptophan degradation by indoleamine 2,3-dioxygenase (IDO). We have previously reported that IDO is present in mammalian lenses, and xanthurenic acid is accumulated in the lenses with aging. Here, we studied the involvement of xanthurenic acid in the human lens epithelial cell physiology. METHODS: Human lens epithelial cells primary cultures were used. Control cells, and cells in the presence of xanthurenic acid grow in the dark. Western blot analysis and immunofluorescence studies were performed. RESULTS: In the presence of xanthurenic acid human lens epithelial cells undergo apoptosis-like cell death. In the control cells gelsolin stained the perinuclear region, whereas in the presence of 10 μM xanthurenic acid gelsolin is translocated to the cytoskeleton, but does not lead to cytoskeleton breakdown. In the same condition caspase-3 activation, and DNA fragmentation was observed. At low (5 to 10 μM) of xanthurenic acid concentration, the elongation of the cytoskeleton was associated with migration of mitochondria and cytochrome c release. At higher concentrations xanthurenic acid (20 μM and 40 μM) damaged mitochondria were observed in the perinuclear region, and nuclear DNA cleavage was observed. We observed an induction of calpain Lp 82 and an increase of free Ca(2+) in the cells in a xanthurenic acid concentration-dependent manner. CONCLUSIONS: The results show that xanthurenic acid accumulation in human lens epithelial cells disturbs the normal cell physiology and leads to a cascade of pathological events. Xanthurenic acid induces calpain Lp82 and caspases in the cells growing in the dark and can be involved in senile cataract development
Radiation protection issues after 20 years of LHC operation
Since November 2009, the LHC commissioning progresses very well, both with
proton and lead beams. It will continue in 2011 and nominal LHC operation is
expected to be attained in 2013. In parallel, plans for various LHC upgrades
are under discussion, suggesting a High-Luminosity (HL) upgrade first and a
High-Energy (HE) upgrade in a later state. Whereas the upgrade in luminosity
would require the modification of only some few key accelerator components like
the inner triplets, the upgrade in beam energy from 7 TeV to 16.5 TeV would
require the exchange of all dipoles and of numerous other accelerator
components. The paper gives an overview of the radiation protection issues
related to the dismantling of LHC components prior to the installation of the
HE-LHC components, i.e. after about 20 years of LHC operation. Two main topics
will be discussed: (i) the exposure of workers to ionizing radiation during the
dismantling of dipoles, inner triplets or collimators and experiments and (ii)
the production, conditioning, interim storage and final disposal of radioactive
waste.Comment: 3 pages, contribution to the EuCARD-AccNet-EuroLumi Workshop: The
High-Energy Large Hadron Collider, Malta, 14 -- 16 Oct 2010; CERN Yellow
Report CERN-2011-003, pp. 134-13
- …