1,154 research outputs found

    Excitation hierarchy of the quantum sine-Gordon spin chain in strong magnetic field

    Full text link
    The magnetic excitation spectrum of copper pyrimidine dinitrate, a material containing S=1/2 antiferromagnetic chains with alternating g-tensor and the Dzyaloshinskii-Moriya interaction, and exhibiting a field-induced spin gap, is probed using submillimeter wave electron spin resonance spectroscopy. Ten excitation modes are resolved in the low-temperature spectrum, and their frequency-field diagram is systematically studied in magnetic fields up to 25 T. The experimental data are sufficiently detailed to make a very accurate comparison with predictions based on the quantum sine-Gordon field theory. Signatures of three breather branches and a soliton, as well as those of several multi-particle excitation modes are identified.Comment: 4 RevTeX pages, 3 figure

    Magnetic ordering of weakly coupled frustrated quantum spin chains

    Full text link
    The ordering temperature of a quasi-one-dimensional system, consisting of weakly interacting quantum spin-1/2 chains with antiferromagnetic spin-frustrating couplings (or zig-zag ladder) is calculated. The results show that a quantum critical point between two phases of the one-dimensional subsystem plays a crucial role. If the one-dimensional subsystem is in the antiferromagnetic-like phase in the ground state, similar to the phase of a spin chain without frustration, weak couplings yield magnetic ordering of the Neel type. For intra-chain spin-frustrating interactions larger than the critical one (at which the quantum phase transition takes place), the quasi-one-dimensional spin system manifests a spiral magnetic incommensurate ordering. The obtained results of our quantum theory are compared with the quasi-classical approximations. The calculated features of magnetic ordering are expected to be generic for weakly coupled quantum spin chains with gapless excitations and spin-frustrating nearest and next-nearest neighbor interactions.Comment: 6 pages, 2 figure

    Spin Dynamics in S=1/2S=1/2 Chains with Next-Nearest-Neighbor Exchange Interactions

    Get PDF
    Low-energy magnetic excitations in the spin-1/2 chain compound (C6_6H9_9N2_2)CuCl3_3 [known as (6MAP)CuCl3_3] are probed by means of tunable-frequency electron spin resonance. Two modes with asymmetric (with respect to the hν=gμBBh\nu=g\mu_B B line) frequency-field dependences are resolved, illuminating the striking incompatibility with a simple uniform S=12S=\frac{1}{2} Heisenberg chain model. The unusual ESR spectrum is explained in terms of the recently developed theory for spin-1/2 chains, suggesting the important role of next-nearest-neighbor interactions in this compound. Our conclusion is supported by model calculations for the magnetic susceptibility of (6MAP)CuCl3_3, revealing a good qualitative agreement with experiment

    Magnetic excitations in the spin-1 anisotropic antiferromagnet NiCl2−4SC(NH2)2NiCl_2-4SC(NH_2)_2

    Full text link
    The spin-1 anisotropic antiferromagnet NiCl_2-4SC(NH2)_2 exhibits a field-induced quantum phase transition that is formally analogous to Bose-Einstein condensation. Here we present results of systematic high-field electron spin resonance (ESR) experimental and theoretical studies of this compound with a special emphasis on single-ion two-magnon bound states. In order to clarify some remaining discrepancies between theory and experiment, the frequency-field dependence of magnetic excitations in this material is reanalyzed. In particular, a more comprehensive interpretation of the experimental signature of single-ion two-magnon bound states is shown to be fully consistent with theoretical results. We also clarify the structure of the ESR spectrum in the so-called intermediate phase.Comment: 9 pages, 10 figure

    Character of magnetic excitations in a quasi-one-dimensional antiferromagnet near the quantum critical points: Impact on magneto-acoustic properties

    Full text link
    We report results of magneto-acoustic studies in the quantum spin-chain magnet NiCl2_2-4SC(NH2_2)2_2 (DTN) having a field-induced ordered antiferromagnetic (AF) phase. In the vicinity of the quantum critical points (QCPs) the acoustic c33c_{33} mode manifests a pronounced softening accompanied by energy dissipation of the sound wave. The acoustic anomalies are traced up to T>TNT > T_N, where the thermodynamic properties are determined by fermionic magnetic excitations, the "hallmark" of one-dimensional (1D) spin chains. On the other hand, as established in earlier studies, the AF phase in DTN is governed by bosonic magnetic excitations. Our results suggest the presence of a crossover from a 1D fermionic to a 3D bosonic character of the magnetic excitations in DTN in the vicinity of the QCPs.Comment: 5 pages, 4 figures. Accepted for publication by Phys. Rev

    Electron Spin Resonance in sine-Gordon spin chains in the perturbative spinon regime

    Full text link
    We report the low-temperature multi-frequency ESR studies of copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating gg-tensor and the Dzyaloshinskii-Moriya interaction, allowing us to test a new theoretical concept proposed recently by Oshikawa and Affleck [Phys. Rev. Lett. 82, 5136 (1999)]. Their theory, based on bosonization and the self-energy formalism, can be applied for precise calculation of ESR parameters of S=1/2S=1/2 antiferromagnetic chains in the perturbative spinon regime. Excellent quantitative agreement between the theoretical predictions and experiment is obtained.Comment: 4 pages, 4 figure

    Magnetic Excitations in the Spin-1 Anisotropic Heisenberg Antiferromagnetic Chain System NiCl2_2-4SC(NH2_2)2_2

    Full text link
    NiCl2_2-4SC(NH2_2)2_2 (DTN) is a quantum S=1 chain system with strong easy-pane anisotropy and a new candidate for the Bose-Einstein condensation of the spin degrees of freedom. ESR studies of magnetic excitations in DTN in fields up to 25 T are presented. Based on analysis of the single-magnon excitation mode in the high-field spin-polarized phase and previous experimental results [Phys. Rev. Lett. 96, 077204 (2006)], a revised set of spin-Hamiltonian parameters is obtained. Our results yield D=8.9D=8.9 K, Jc=2.2J_c=2.2 K, and Ja,b=0.18J_{a,b}=0.18 K for the anisotropy, intrachain, and interchain exchange interactions, respectively. These values are used to calculate the antiferromagnetic phase boundary, magnetization and the frequency-field dependence of two-magnon bound-state excitations predicted by theory and observed in DTN for the first time. Excellent quantitative agreement with experimental data is obtained

    Electron Spin Resonance in a Spin-1/2 Heisenberg Strong-rung Ladder

    Get PDF
    Cu(C8_8H6_6N2_2)Cl2_2, a strong-rung spin-1/2 Heisenberg ladder compound, is probed by means of electron spin resonance (ESR) spectroscopy in the field-induced gapless phase above Hc1H_{c1}. The temperature dependence of the ESR linewidth is analyzed in the quantum field theory framework, suggesting that the anisotropy of magnetic interactions plays a crucial role, determining the peculiar low-temperature ESR linewidth behavior. In particular, it is argued that the uniform Dzyaloshinskii-Moriya interaction (which is allowed on the bonds along the ladder legs) can be the source of this behavior in Cu(C8_8H6_6N2_2)Cl2_2

    Dynamics of a Heisenberg spin chain in the quantum critical regime: NMR experiment versus effective field theory

    Full text link
    A comprehensive comparison between the magnetic field- and temperature-dependent low frequency spin dynamics in the antiferromagnetic spin-1/2 Heisenberg chain (AFHC) system copper pyrazine dinitrate, probed via the 13C-nuclear magnetic resonance (NMR) relaxation rate 1/T1, and the field theoretical approach in the Luttinger liquid (LL) regime has been performed. We have found a very good agreement between the experiment and theory in the investigated temperature and field range. Our results demonstrate how strongly the quantum critical point affects the spin dynamics of Heisenberg spin chain compounds.Comment: 5 pages, 3 figure

    Integrable models of coupled Heisenberg chains

    Full text link
    We show that the solutions of the Yang--Baxter equation invariant under the action of the Yangian Y(sl2)Y(sl_2) lead to inhomogenous vertex models. Starting from a four dimensional representation of Y(sl2)Y(sl_2) we obtain an integrable family of coupled Heisenberg spin-121\over2 chains. Some thermodynamical properties of this model are studied by means of the algebraic Bethe Ansatz.Comment: 10 pages, latex, 5 postscript figure
    • …
    corecore