3 research outputs found

    Contribution of TIR domain-containing adapter inducing IFN-beta-mediated IL-18 release to LPS-induced liver injury in mice.

    No full text
    BACKGROUND/AIMS: After treatment with heat-killed Propionibacterium acnes mice show dense hepatic granuloma formation. Such mice develop liver injury in an interleukin (IL)-18-dependent manner after challenge with a sublethal dose LPS. As previously shown, LPS-stimulated Kupffer cells secrete IL-18 depending on caspase-1 and Toll-like receptor (TLR)-4 but independently of its signal adaptor myeloid differentiation factor 88 (MyD88), suggesting importance of another signal adaptor TIR domain-containing adapter inducing IFN-beta (TRIF). Nalp3 inflammasome reportedly controls caspase-1 activation. Here we investigated the roles of MyD88 and TRIF in P. acnes-induced hepatic granuloma formation and LPS-induced caspase-1 activation for IL-18 release. METHODS: Mice were sequentially treated with P. acnes and LPS, and their serum IL-18 levels and liver injuries were determined by ELISA and ALT/AST measurement, respectively. Active caspase-1 in LPS-stimulated Kupffer cells was determined by Western blotting. RESULTS: Macrophage-ablated mice lacked P. acnes-induced hepatic granuloma formation and LPS-induced serum IL-18 elevation and liver injury. Myd88(-/-) Kupffer cells, but not Trif(-/-) cells, exhibited normal caspase-1 activation upon TLR4 engagement in vitro. Myd88(-/-) mice failed to develop hepatic granulomas after P. acnes treatment and liver injury induced by LPS challenge. In contrast, Trif(-/-) mice normally formed the hepatic granulomas, but could not release IL-18 or develop the liver injury. Nalp3(-/-) mice showed the same phenotypes of Trif(-/-) mice. CONCLUSIONS: Propionibacterium acnes treatment MyD88-dependently induced hepatic granuloma formation. Subsequent LPS TRIF-dependently activated caspase-1 via Nalp3 inflammasome and induced IL-18 release, eventually leading to the liver injury

    IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions

    No full text
    Atopic dermatitis (AD) is a pruritic inflammatory skin disease. Because IL-18 directly stimulates T cells and mast cells to release AD-associated molecules, Th2 cytokines, and histamine, we investigated the capacity of IL-18 to induce AD-like inflammatory skin disease by analyzing KIL-18Tg and KCASP1Tg, which skin-specifically overexpress IL-18 and caspase-1, respectively. They spontaneously developed relapsing dermatitis with mastocytosis and Th2 cytokine accumulation accompanied by systemic elevation of IgE and histamine. Stat6-deficient KCASP1Tg displayed undetectable levels of IgE but manifested the same degree of cutaneous changes, whereas IL-18-deficient KCASP1Tg evaded the dermatitis, suggesting that IL-18 causes the skin changes in the absence of IgE/stat6. KIL-18Tg and IL-1-deficient KCASP1Tg took longer to display the lesion than KCASP1Tg. Thus, AD-like inflammation is initiated by overrelease of IL-18 and accelerated by IL-1. Our present study might provide insight into understanding the pathogenesis of and establishing therapeutics for chronic inflammatory skin diseases including AD
    corecore