6,836 research outputs found

    A Langevin analysis of fundamental noise limits in Coherent Anti-Stokes Raman Spectroscopy

    Get PDF
    We use a Langevin approach to analyze the quantum noise in Coherent Anti-Stokes Raman Spectroscopy (CARS) in several experimental scenarios: with continuous wave input fields acting simultaneously and with fast sequential pulsed lasers where one field scatters off the coherence generated by other fields; and for interactions within a cavity and in free space. In all the cases, the signal as well as the quantum noise due to spontaneous decay and decoherence in the medium are shown to be described by the same general expression. Our theory in particular shows that for short interaction times, the medium noise is not important and the efficiency is limited only by the intrinsic quantum nature of the photon. We obtain fully analytic results \emph{without} making an adiabatic approximation, the fluctuations of the medium and the fields are self solved consistently.Comment: 12 pages, 1 figur

    Quantum parallel dense coding of optical images

    Full text link
    We propose quantum dense coding protocol for optical images. This protocol extends the earlier proposed dense coding scheme for continuous variables [S.L.Braunstein and H.J.Kimble, Phys.Rev.A 61, 042302 (2000)] to an essentially multimode in space and time optical quantum communication channel. This new scheme allows, in particular, for parallel dense coding of non-stationary optical images. Similar to some other quantum dense coding protocols, our scheme exploits the possibility of sending a classical message through only one of the two entangled spatially-multimode beams, using the other one as a reference system. We evaluate the Shannon mutual information for our protocol and find that it is superior to the standard quantum limit. Finally, we show how to optimize the performance of our scheme as a function of the spatio-temporal parameters of the multimode entangled light and of the input images.Comment: 15 pages, 4 figures, RevTeX4. Submitted to the Special Issue on Quantum Imaging in Journal of Modern Optic

    Coulomb Interaction and Quantum Transport through a Coherent Scatterer

    Full text link
    An interplay between charge discreteness, coherent scattering and Coulomb interaction yields nontrivial effects in quantum transport. We derive a real time effective action and an equivalent quantum Langevin equation for an arbitrary coherent scatterer and evaluate its current-voltage characteristics in the presence of interactions. Within our model, at large conductances G0G_0 and low TT (but outside the instanton-dominated regime) the interaction correction to G0G_0 saturates and causes conductance suppression by a universal factor which depends only on the type of the conductor.Comment: 4 pages, no figure

    Electron cooling in diffusive normal metal - superconductor tunnel junctions with a spin-valve ferromagnetic interlayer

    Get PDF
    We investigate heat and charge transport through a diffusive SIF1F2N tunnel junction, where N (S) is a normal (superconducting) electrode, I is an insulator layer and F1,2 are two ferromagnets with arbitrary direction of magnetization. The flow of an electric current in such structures at subgap bias is accompanied by a heat transfer from the normal metal into the superconductor, which enables refrigeration of electrons in the normal metal. We demonstrate that the refrigeration efficiency depends on the strength of the ferromagnetic exchange field h and the angle {\alpha} between the magnetizations of the two F layers. As expected, for values of h much larger than the superconducting order parameter \Delta, the proximity effect is suppressed and the efficiency of refrigeration increases with respect to a NIS junction. However, for h \sim \Delta the cooling power (i.e. the heat flow out of the normal metal reservoir) has a non-monotonic behavior as a function of h showing a minimum at h \approx \Delta. We also determine the dependence of the cooling power on the lengths of the ferromagnetic layers, the bias voltage, the temperature, the transmission of the tunneling barrier and the magnetization misalignment angle {\alpha}.Comment: 8 pages, 7 figure

    Electron cooling by diffusive normal metal - superconductor tunnel junctions

    Full text link
    We investigate heat and charge transport in NN'IS tunnel junctions in the diffusive limit. Here N and S are massive normal and superconducting electrodes (reservoirs), N' is a normal metal strip, and I is an insulator. The flow of electric current in such structures at subgap bias is accompanied by heat transfer from the normal metal into the superconductor, which enables refrigeration of electrons in the normal metal. We show that the two-particle current due to Andreev reflection generates Joule heating, which is deposited in the N electrode and dominates over the single-particle cooling at low enough temperatures. This results in the existence of a limiting temperature for refrigeration. We consider different geometries of the contact: one-dimensional and planar, which is commonly used in the experiments. We also discuss the applicability of our results to a double-barrier SINIS microcooler.Comment: 9 pages, 4 figures, submitted to Phys. Rev.
    • …
    corecore