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We use a Langevin approach to analyze the quantum noise in coherent anti-Stokes Raman spectroscopy in
several experimental scenarios: with continuous-wave input fields acting simultaneously and with fast sequen-
tial pulsed lasers where one field scatters off the coherence generated by other fields and for interactions within
a cavity and in free space. In all cases, the signal and quantum noise due to spontaneous decay and decoherence
in the medium are shown to be described by the same general expression. Our theory in particular shows that
for short interaction times, the medium noise is not important and the efficiency is limited only by the intrinsic
quantum nature of the photon. We obtain fully analytic resultswithoutmaking an adiabatic approximation; the
fluctuations of the medium and the fields are solved self-consistently.
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I. INTRODUCTION

The field of Raman spectroscopy is a very mature one that
boasts a vast literature which over time has developed and
explored countless ingenious improvements and techniques
to tweak out better and stronger signals. Much of the moti-
vation for this lies in the fact that Raman scattering inevita-
bly involves the structure of the scattering medium, because
the incoming and outgoing signals differ by the frequency of
some internal mode of the constituent molecules or atoms,
thereby making it an invaluable tool for spectroscopy.

The weak signals associated with spontaneous Raman
scattering were long overcome by stimulated scattering
through nonlinear interactions. Signal has been enhanced
through resonance with some specific natural modes of the
molecules. In particular the technique of coherent anti-
Stokes Raman scattering(CARS) has emerged as one of the
most useful Raman techniques; it involves two incoming
fields that create coherence in the medium which thereby
enhances the scattered signal. The generated field being anti-
Stokes eliminates fluorescence problems, and resonance en-
hancement is also usually possible.

One way to improve on existing CARS techniques has
been recently proposed[1] which uses sequential femtosec-
ond pulses wherebymaximalcoherence is created via adap-
tive algorithms with one set of lasers and then the medium is
probed by another laser. The technique called the femtosec-
ond adaptive spectroscopic technique(FAST) CARS has
been applied in preliminary experiments[2] and further
promises to increase the CARS Raman signal. Experimental
work is underway at several laboratories. The method offers
hope for developing a way of detecting(in real time) dan-
gerous biological spores like anthrax.

For any spectroscopic method its relevancy and effective-
ness is eventually defined by the signal/noise ratio. A brief

review through the literature[3,4] shows that there have been
methods developed to overcome almost every possible labo-
ratory source of noise be it be unstable lasers or nonresonant
background signals, perhaps not all with the same technique
but the point is that such techniques exist. But in the end
there is still the inherent quantum noise of the system which
is unavoidable. There are two sources for this. The first is
truly fundamental in the sense that it represents the lower
limit of signal detection; this is the shot noise which is asso-
ciated with Poisson statistics of lasers used far above thresh-
old. The second arises from the spontaneous emission and
the decoherence associated with excited atoms and mol-
ecules created during all Raman scattering processes. Often
this second source of noise, which we will refer to as me-
dium noise, is much larger than the shot noise and therefore
is the limiting quantum noise.

Thus our goal in this paper is to undertake a comprehen-
sive study using general Langevin methods to analyze the
quantum noise in CARS and FAST CARS. Our approach and
considerations have the advantage of being general and may
easily be used to study other coherent Raman processes. We
study several experimental scenarios allowing for interac-
tions within or without a cavity and for pulsed or continuous-
wave input fields. We find a remarkable similarity in behav-
ior of all these cases, suggesting that our results probably
have a broader validity beyond the configurations we con-
sider. In particular, we find that the medium(solvent) noise is
not important for FAST CARS whose efficiency is limited by
the intrinsic quantum character of the photon.

In Secs. II and III we define the problem in terms of
third-order nonlinear interactions and Langevin equations,
and in Sec. IV we describe our model in detail, laying out the
equations and assumptions that we use. In Sec. V we con-
sider the experiments using sequential femtosecond pulses
and in Sec. VI we discuss experiments involving concurrent
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continuous-wave input fields. Then in Sec. VII we present a
detailed discussion of our results and their implications, and
we provide numerical estimates based on realistic experi-
mental parameters.

II. NONLINEAR INTERACTION

We will consider stimulated Raman scattering in the
CARS configuration(see Fig. 1) involving three input fields
â1, â2, â3 and one generated fieldâ4 with corresponding fre-
quenciesni=1,2,3,4. The interaction Hamiltonian is written in
terms of the two Raman-coupled atomic or molecular levels
ubl and ucl, energies"vb and"vc, and lowering operatorŝ
= uclkbu:

V̂ = "sR12â1â2
† + R43â3

†â4dŝ†eitD + H.a. s1d

Here and elsewhere the time arguments will be suppressed
where obvious in order to reduce clutter. The exponential
factor signifies that all operators are in the interaction pic-
ture; its argumentD=vbc+n21=vbc+n34 with vbc=vb−vc.
These particular combination of atomic and field frequencies
in D implies that the Hamiltonian contains onlyRaman reso-
nant terms and excludes all nonresonant terms. For the case
of FAST CARS wheren1 and n2 pulses interact with the
atoms beforen3, the nonresonant terms are simply not
present. However, when all the fields are present simulta-
neously the permutations of the fields lead to 24 terms in the
perturbation expansion which all contribute at the same order
[3]; in that case, we have in effect neglected the 20 remain-
ing terms which have nonresonant combinations of the fields
and the atomic levels. If we are close to resonance, this is
certainly justified; in fact, we will assume perfect two-photon
Raman resonance in this paper.

The Raman coupling constants are defined byR12
=R128 E1E2

* ,

R128 =
− 1

"2 o
j
F smW f j · «W1dsmW ji · «W2d

sv jc + n2d
+

smW f j · «W2dsmW ji · «W1d

sv jc − n1d G ,

s2d

and likewise forR43. The«W are unit polarization of the fields,
mW are the dipole moments,j labels the intermediate states,
and El =Îs"nld / s2e0epVd are the field quantization factors
over volumeV in a medium of dielectric constantep taken to

be about the same for all laser fields. The decoherence rate
between levelsb andc is denoted byG and the depopulation
rate from levelb to levelc by Gb; damping to other levels is
assumed negligible.

It will help to establish a relation with macroscopic quan-
tities. The classical field amplitudes areEi =Eiai for
coherent-state expectationsai =kâil. The third-order suscep-
tibility is defined to be

xs3ds− n4,n1,− n2,n3d = − "
R438

*R128

sD − iGd
N

V
, s3d

with expected population difference between the two levels
N=Nb−Nc. The Maxwell equation for the slowly varying
amplitude of the generated field is

S ]

]t
+ v

]

]z
DE4 =

in4

2e0ep
xs3dE1E2

*E3, s4d

with the velocity in the mediumv=c/Îep. We note that the
definition of the third-order susceptibility as such tacitly as-
sumes that only the the lowest level has significant popula-
tion at any given time.

III. LANGEVIN EQUATIONS OF MOTION

The three input fieldsn1, n2, andn3 are typically strong
laser fields far above threshold; we will treat them asclassi-
cal fields and replaceâ1s2,3d→a1s2,3d. Considerable simplifi-
cation is achieved by defining

Âstd =
R12a1a2

* + R43a3
* â4std

g
,

j =
R12a1a2

*

g
, g = uR43a3

* u. s5d

The normalizationg has been chosen such thatÂstd satisfies

the boson commutation rules. Thus we can treatÂstd like a
photon field operator. The parametersg and j being depen-
dent only on the input fields will treated asconstantsin our
calculations. The Heisenberg-Langevin equations of motion
for the atomic operators are obtained from the interaction
Hamiltionian:

ṡ̂ = − sG + iDdŝ + igfŝb − ŝcgÂ + F̂s,

ṡ̂b = − Gbŝb + igfÂ†ŝ − ŝ†Âg + F̂b,

ṡ̂c = Gbŝb − igfÂ†ŝ − ŝ†Âg + F̂c. s6d

The coherence operator here differs from that in Eq.(1) by a
phase factorŝstde−iDt→ ŝstd, andŝbscd are the population op-

erators for the atomic levels. TheF̂’s are the Langevin noise

operators. They have vanishing first momentskF̂stdl=0,
since the entropy of the system cannot be lowered by noise
[5]. The second moments are taken to bed correlated in time
corresponding to Markovian white noise:

FIG. 1. CARS scheme with three input fields of frequencyn1,
n2, andn3 and a generated signal fieldn4=n1+n3−n2. The radiative
damping rate from levelb to levelc is Gb and the dephasing rate of
the coherence between levelsb andc is G.
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kF̂istdF̂jst8dl = 2Dijdst − t8d. s7d

The Dij are the diffusion coefficients in analogy with classi-
cal Langevin equations. The diffusion coefficients associated
with Eqs. (6) are calculated using the generalized
fluctuation-dissipation theorem[6] in Appendix A.

The Langevin equation for the signal field operator is

ȧ̂4 = − gâ4 − iR43
* a3ŝ + F̂a4

. s8d

Here we included an heuristic field damping rateg to allow
for an atom-field interaction inside a cavity. From this equa-
tion, we can construct the equation

Â
˙

= − gsÂ − jd − igŝ. s9d

The effects of a thermal heat bath that accounts for a nonva-

nishing F̂a4
are neglected by assuming low temperature. In

this paper we will also assumetwo-photon Raman resonance
and thereby setD=0.

We next define macroscopic variables by summing over
the operators for all the particles(atoms/molecules) in the
medium,

M̂ = − i o ŝ, N̂bscd = o ŝbscd, s10d

and the population sum and difference operatorsN̂T=N̂b

+N̂c andN̂=N̂b−N̂c. The equations of motion for the collec-
tive atomic variables and the field are then

M̂
˙

= − GM̂ + gN̂A + F̂M ,

N̂
˙

= − GbsN̂ + N̂Td − 2gfÂ * M̂ + M̂ * Âg + F̂N,
s11d

N̂
˙

T = 0,

Â
˙

= − gsÂ − jd + gM̂,

with the total number of active particleskN̂Tl being con-
served. The associated diffusion coefficients are shown in
Appendix A.

Solution of these equations is facilitated by transforming
them into equivalentc-number equations[7–9]. This is
achieved by putting all the operators in normal order chosen

to be Â†, M̂†, N̂, M̂, Â which establishes an unique corre-
spondence between the quantum and classical equations.
Since the equations are already in normal order the operators
are simply replaced with their classical counterpartsA*,
M*, N, M, A.

The c-number noise functions satisfykFstdl=0 and
kFstdFst8dl=2Ddst− t8d just like their operator counterparts.
The c-number diffusion coefficients will, however, acquire
additional terms arising from normal ordering; all the nonva-
nishing coefficients are listed in Appendix A. The corre-
sponding properties of the noise in the frequency domain are
summarized in Appendix B. It is worth mentioning here that
the expectations in thec-number representation are now in

the Glauber-SudarshanP representation of a thermal distri-
bution which happens to be a Gaussian distribution of zero
mean. This means that the Gaussian moment theorem applies
and the first and second moments suffice to determine the
distribution completely.

IV. EQUATIONS AND ASSUMPTIONS OF THE MODEL

We consider small fluctuations about the mean values for
both atomic and field variablesMstd=M0std+dMstd, Nstd
=N0std+dNstd, andAstd=A0std+dAstd. It is convenient to
define two real variablesTstd=M* stdA0std+MstdA0

*std and
Sstd= uAstdu2, with linearized fluctuations

dSstd = A0stddA * std + A0
*stddAstd,

dTstd = A0stddM * std + A0
*stddMstd, s12d

FTstd = A0stdFM
* std + A0

*stdFMstd.

The relation to the properties of the generated fielda4 that
we are finally interested in are as follows: The strength of the
signal field, given by the number of generated photons, and
the atomic noise in the photon number, quantified by itsvari-
ance, are determined by

n4std = ka4
*stdastdl = uA0std − ju2,

s13d

dn4
2std =

n4std
uA0stdu2

kdS2stdl.

To reduce clutter we will often leave out the expectation
brackets, being obvious from the context. The variance is
obviously linearized and neglects relatively small terms qua-
dratic in the correlations. We will primarily consider regimes
where the generated fielda4 is much weaker than the input
fields (as we justify numerically in Sec. VII B) and therefore
we will replaceuA0u2.uju2 where appropriate and consistent.

A. Adiabatic elimination of the averages
of atomic variables

Since the fluctuations have vanishing average, we can
write separate equations for the mean and the linear fluctua-
tions. The equations for the averages can be had by simply
leaving out the Langevin forces:

]tM0 = − GM0 + gN0A0,

]tN0 = − GbsN0 + NTd − 2gfA0
*M0 + M0

*A0g, s14d

]tA0 = − gsA0 − jd + gM0.

Atomic and molecular transitions typically occur on a faster
time scale than the variations in a radiation field, which
means that the medium will adiabatically follow the field for
weak coupling. Even when using fast pulses, the coherence
generating pulses can be taken to be of sufficiently long du-
ration for this to be true. Therefore taking averages over
intermediate time scales, the time derivatives in the equa-
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tions for the averages of the medium variablesM0 andN0
may be neglected in what is called adiabatic elimination[6]
and we obtain algebraic relations for the coarse-grained av-
erages:

N0 = −
NT

1 + Buju2
, M0 = −

C

g

A0

1 + Buju2
, s15d

where we setuA0u2.uju2 as discussed earlier. We define some
parameters here that we will use often and which will serve
to simplify our expressions considerably:

B =
4g2

GbG
, C =

NTg2

G
. s16d

The parameterB is dimensionless andC carries the dimen-
sion of inverse time. As we corroborate numerically later
Buju2!1, so the upper level is never strongly populated,
N0.−NT and we can simplify by setting 1+Buju2.1 in the
rest of the paper. Substituting the atomic mean values we get
an uncoupled equation for the average of the field variable:

]tA0 = − gsA0 − jd − CA0. s17d

B. Fluctuations

In describing the fluctuations, we cannot make arguments
for adiabatic elimination of the medium variables as we did
for the averages; this is due to the presence of the rapidly
varying noise functions. An attempt to make such an ap-
proximation can lead to unphysical divergences in the corre-
lations; we will discuss this issue in some detail in Appendix
D. Therefore we solve coupled equations for the fluctuations
for both the field and medium. We write the relevant equa-
tions in terms of the variablesT andS:

]tdT = − GdT + 2gdNuA0u2 + gN0dS + FT,

]tdN = − GbdN + 2CdS − 2gdT + FN, s18d

]tdS = − gdS + gdT.

In writing these equations, we have treatedA0 as a constant.
We will see that in all the cases we consider in this paper this
assumption is valid, because eitherA0 will have an unvary-
ing steady state value or it will satisfyA0.j, even as a
function of position when propagation in free space is inov-
lved (see next subsection). It is clear from the equations
above that the fluctuations can be fully expressed in terms of
the correlations of the variablesT andN. Using the results in
Appendix A, we find that the two variables are uncorrelated
with each other but the strengths of their autocorrelations are
specified by the diffusion coefficients

2DTT = 2sG − GbdNTBuju4,

s19d
2DNN = 4GbNTBuju2,

where we used the expressions for the averages in Eq.(15).
In writing these expressions we used the weak-field approxi-
mationA0.j and the assumption of weak upper level occu-

pation Buju2!1, and therefore in effect we can treat these
coefficients as constants.

C. Free space description

The equations above are appropriate for describing ex-
periments conducted in a cavity of damping rateg. However,
if we wish to describe experiments in free space, we have to
allow for field propagation through the medium and effec-
tively replaceg→v]z. An approach discussed by Drummond
and Carter[8,10] outlined in Appendix C, leads to the appro-
priate space-time equation for the field variable:

s]t + v]zdAsz,td = gMsz,td. s20d

This equation follows from Eq.(C9) derived in Appendix C,
on assuming that all the input fields propagate collinearly in
thez direction and their amplitudesa1s2,3d vary little over the
interaction lengthL—i.e., the length of the region over
which the fields interact with the atoms—and therefore may
be treated as constants.

Thus for experiments in free space, equations for the field
variable in Eqs.(17) and (18) are modified to

s]t + v]zdA0sz,td = − CA0sz,td,

s21d
s]t + v]zddSsz,td = gdTsz,td.

The equations for the atomic variables are formally un-
changed, but they now carry both position and time argument
sz,td; their spatial dependence arises through their interde-
pendence on the field variable.

V. PULSED INPUTS

We first consider the case where the input laser fields are
extremely short and fast pulses. In particular we take the
pulses to arrive in sequence as is the case in FAST CARS
[1]; the fieldsa1 anda2 are allowed to interact first with the
atoms for a durationDtc, creating the coherence; then, after a
delay Dtd the field a3 occurs for timeDt3. This means that
the atomic variables can now only depend on the first two
fields, so we replaceA0→j in Eqs. (17) and (19) and also
setdS=0 in the equations for the fluctuations of atomic vari-
ables:

]tdT = − GdT + 2gdNuju2 + FT,

s22d
]tdN = − GbdN − 2gdT + FN.

The main premise for this scenario is that when a rapid
sequence of fast femtosecond pulses are used, the fielda3
scatters off the generated coherence before it has time to
decay significantly. Thus for time intervals such thatDtd
+Dt3!G−1, Gb

−1 the generated coherence may be taken to be
constant. For longer durations, however, we have to allow
for decay of the coherenceM0 in Eq. (15).

During the signal-generating cycle whena3 is present the
mean coherence is described by

]tM0 = − GM0 − gsA0 − jdN0. s23d

After the coherence generating pulses are turned off, the
value of generated coherence from Eq.(15), M0s0d
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=gjN0/G can be taken as the initial value of the coherence
in the above equation(if Dtd.0) and since initially there is
no signal fieldA0s0d=j. It is then easy to see that the ratio of
the magnitude of the first term to that of the second term is
,uju / uA0−ju which is large for weak generated field and
short duration pulses. Therefore we can neglect the second
term and take the driving coherence to simply decay expo-
nentially from the moment the generating fields are turned
off M0std=M0s0de−Gt.

The equation for the average field then becomes

]tA0 = − gsA0 − jd − Cje−Gt. s24d

The fluctuations will likewise decay since the diffusion co-
efficients depend on the averagesN0 andM0. The diffusion
coefficients in Eq.(19) will then have an exponentially de-
caying time dependence,DNN,e−Gbt and DTT,e−Gt. We
note, however, that there is no constraint on the durationDtc
of the coherence generating pulses, so they can be taken to
be sufficiently long to create a steady state value of the co-
herence before they are turned off, thereby justifying adia-
batic elimination.

A. Pules: Interaction in a cavity

The mean value of the field variable after the third pulse
A0sDt3d is easily obtained by integrating Eq.(24):

A0sDt3d − j = − Cj
e−GDt3 − e−gDt3

g − G
. s25d

The phase ofA0 is given by that ofj, sinceA0/j is real.
When the duration of the third pulse is short,Dt3!G−1:

A0sDt3d − j . − CjDt3. s26d

The equal time fluctuations of the field are given by

dS2sDt3d = g2E
0

Dt3

dtE
0

Dt3

dt8e−gs2Dt3−t−t8dkdTstddTst8dl.

s27d

In order to evaluate this we first take a Fourier transform of
Eqs.(22), the relevant definitions and properties of the fluc-
tuations and noise in the frequency domain are described in
Appendix B:

sG − ivddTsvd = 2guju2dNsvd + FTsvd,

sGb − ivddNsvd = − 2gdTsvd + FNsvd, s28d

which we then solve to get

dT svd .
f2guju2FN + sGb − ivdFTg

sG − ivdsGb − ivd
. s29d

Assuming weak excitation we setu1+4g2j2/ fG− ivgfGb

− ivgu2.1. Using this expression fordTsvd we can evaluate
the integrals in Eq.(27). The details of the calculations are
shown in Appendix E. The general result result derived there
is not particularly illuminating; instead, here we consider the
relevant limiting cases. In the short-pulse limitDt3!G−1, we

found that a Taylor expansion leads to an exact cancellation
of the terms linear inDt3 and we get a quadratic dependence
on the interaction time:

dS2sDt3d .
g2Dt3

2

2
FBuju42DNN

sG + Gbd
+

2DTT
G

G . s30d

A conspicuous feature of this limit is thatg is absent in the
expressions for both the mean and fluctuation. Thus, for
pulses of duration shorter than the cavity damping time, the
presence of the cavity has no effect on the signal or its asso-
ciated noise due to the medium. This short-pulse limit im-
plies the hierarchy of time scalesg−1@G−1, Gb

−1@Dt3.
In the opposite limit of long pulse durationDt3@g−1

@G−1, Gb
−1 the fluctuation is approximately

dS2sDt3d .
g2Dt3

2e−GDt3

2
F2DNN

GGbg
Buju4 +

2DTT
G2g

G . s31d

Here we set the depopulation rate and decoherence rates to
be equalG.Gb, to mask unnecessary details and highlight
the main feature, which is that both the mean and fluctua-
tions essentially vanish towards the end of a long third pulse
as the driving coherence disappears. The conclusion is that,
regardless of the duration of the third pulse, a significant
signal field is generated only during times satisfying,G−1,
Gb

−1.

B. Pulses: Interaction in free space

The last subsection showed that increasing the duration of
the interaction between the third pulse and the atoms will
make a difference only up to a point, since we are limited by
the decay time of the coherence. In free space, this means
that we will not get a stronger sustained signal by simply
increasing the interaction lengthL. Therefore we will confine
ourselves to sample sizesL,vG−1, vGb

−1, and we will use
Eq. (21) where, taking the coherence to remain unchanged
during the time of interaction, we setA0sz,td→j.

A time-frequency Fourier transform and subsequent inte-
gration over the interaction length gives

s− iv + v]zdA0sz,vd = − Cjdsvd

⇒A0sL,vd = eivL/vjF1 − C
L

v
G , s32d

and an inverse transform yields the delta functiondst−L /vd,
which simply tells us that time is a redundant parameter and
the field can be specified by its position alone:

A0sLd = j − Cj
L

v
. s33d

Likewise for the variance we consider the equations for
the fluctuations in the frequency domain. Since we set
A0sz,td.j, the equations are given simply by Eq.(28). Sub-
stituting the expressiond T svd from Eq. (29) into the equa-
tion for the field fluctuation,
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− iv + v]zdSsz,vd = gd Tsz,vd, s34d

and integrating over the interaction lengthL we get the spec-
tral density of the noise:

dS2sL,vd =
1

2p

L2

v2

f4g4uju42DNN + g2sGb
2 + v2d2DTTg

sG2 + v2dsGb
2 + v2d

.

The autocorrelation at equal times obtained by doing a par-
tial fraction decomposition and an inverse Fourier transform
defines the variance

dSsLd2 =
g2L2

2v2 FBuju42DNN
sG + Gbd

+
2DTT

G
G . s35d

We see that both the mean and variance are identical to what
we found in the short-pulse limit when the interaction took
place inside a cavity, bearing in mind that hereL /v defines
the time of interaction. This reaffirms the conclusion that for
short pulses there is no real advantage in using a cavity.

VI. CONTINUOUS-WAVE (cw) INPUTS

We now consider the cases where all three input fields
occur continuously and simultaneously. In this case steady-
state values for the medium variables may be considered,
and their decay does not put limits on the interaction time as
it did previously when using sequential pulses. But the cal-
culation of fluctuations is complicated by the fact that the
equations for the medium variables and the field variable do
not decouple as they did for sequential pulses.

A. Continuous waves: Interaction in a cavity

The average is found by integrating Eq.(17), exactly in
the form it is written, with the initial conditionA0s0d=j:

A0std − j = − Cj
1 − e−sg+Cdt

sg + Cd
. s36d

Unlike the pulsed case there are no obvious time constraints,
except those arising from possible damage to the sample by
prolonged exposure to the fields, so we can take the long-
time limit t→` and we get a steady-state signal

A0 − j = − Cj
1

sg + Cd
. s37d

We note that ifg!C, the generated field essentially van-
ishes, which suggests that we need to havegùC. In that
case we can further use the assumption of weak signal field
to conclude that

A0 − j

j
.

C

g
! 1 ⇒ A0 − j . − Cj

1

g
. s38d

The fluctuations are best determined by writing the three
coupled equations in the frequency domain in matrix form:

3sG − ivd − 2guA0u2 − gN0

2g sGb − ivd − 2C

− g 0 sg − ivd
43 dT

dN
dS 4 = 3FT

FN
0
4 .

Inverting the coefficient matrixM F gives the solution

dSsvd =
fsGb − ivdgFTsvd + 2g2uA0u2FNsvdg

detM F
,

s39d
detM F . sG − ivdsGb − ivdsg − ivd.

In computing the determinant in the denominator we intro-
duced some simplifications using the arguments leading up
to Eq. (38) and we neglected the frequency dependence in
the term proportional toBuA0u2 [refer to the comment follow-
ing Eq. (29)]. Squaring this gives the power spectrum(Ap-
pendix B) and then a Fourier transform and the adiabatic
assumptiong!G ,Gb yields the steady-state fluctuations

dS2std .
g2

2g
F2DNN

GGb
Buju4 +

2DTT
G2 G . s40d

While the adiabatic assumption was not necessary it gave a
simpler expression; the more general expression is shown in
Appendix E. What sets this case apart from the rest is that
both the signal field and the variance in the steady state de-
pend on the cavity lifetimeg−1 and that the dependence is
linear.

B. Continuous waves: Interaction in free space

In order to find the signal strength, we do a Fourier trans-
form of Eq. (21),

s− iv + v]zdA0sz,vd = − CA0sz,vd, s41d

and integrate it over the interaction lengthL to get

A0sL,vd = eivL/vA0s0,vde−CL/v. s42d

As in the analogous case in a cavity, the time parameter is
seen to be redundant after an inverse Fourier transform and
we get simply

A0sLd = je−CL/v. s43d

In calculating the fluctuations we take the Fourier trans-
form of the equations for the atomic variables as they appear
in Eqs.(18) and the field fluctuation as it appears in Eq.(21),
keeping in mind that all the fluctuation and noise elements
will thereafter carry an argument ofsz,vd. The three coupled
equations yield an equation for the field fluctuation:

fv]z − iv − GsvdgdS .
gf2guju2FN + sGb − ivdFTg

sG − ivdsGb − ivd
,

s44d

with

Gsvd .
gf4gCuju2 + sGb − ivdgN0g

sG − ivdsGb − ivd
.

We integrate this with respect to the spatial coordinatez, and
thereby we get the spectral density
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dS2sL,vd =
1

2p

L

v

1 − e2 RefGsvdgL/v

− 2 RefGsvdg

3
4g4uju42DNN + g2sGb

2 + v2d2DTT
sG2 + v2dsGb

2 + v2d
.

We useBuju2!1 to simplify

2 RefGsvdg . −
2CG2

sG2 + v2d
. s45d

We note this quantity achieves the largest magnitude when
v=0. In the case of short interaction lengthCL/v!1 both
the signal and variance resemble those we got in the case of
pulsed inputs in free space:

A0sLd . j − Cj
L

v
,

dS2sL,vd .
1

2p

L2

v2

f4g4uju42DNN + g2sGb
2 + v2d2DTTg

sG2 + v2dsGb
2 + v2d

.

s46d

In the opposite time limit of long interaction length
CL/v@1, we find that the expression for the average value
of the field variableA0 tends to become increasingly smaller.
Equation(43) tells us

n4sLd = uA0sLd − ju2 = ujs1 − e−CL/vdu2, s47d

so that in this limit the input fields vanish and give way to
the signal field. Our model, however, does not allow us to
obtain an accurate expression for the variance in this limit.
This is because Eqs.(18) were based on the assumption that
A0 does not change significantly and the generated field is
relatively weak, and this is no longer true whenL becomes
large. Yet based on the fact that average valueA0 decreases
over the lengthL and hence the diffusion coefficients also
decrease, we could expect that the noise contribution from
the active medium will actually be lower farther along the
interaction length.

VII. DISCUSSION OF RESULTS, INFERENCES,
AND ASSUMPTIONS

We will now discuss in some detail the physical implica-
tions of the results we obtained in the previous sections and
also elaborate a bit more on our assumptions and some as-
sociated subtleties that we touched on while deriving those
results. We begin by considering realistic numerical values
for our parameters and variables and thereby provide con-
crete justification for the approximations we made.

A. Numerical estimates

For the purpose of numerical estimation we will use the
specific example of an anthrax spore for which the Raman-
active molecule is dipicolinic acid(DPA) which constitutes
17% of the weight, the rest being mainly water. The number
density of DPA molecules in an anthrax spore isNT,4

31026 molecules m−3, and the dimensions of the spore itself
are 13231 mm3. We will take all optical frequencies to be
in the visible rangen,2pc/l.431015.

Since some of the properties of DPA are not easily avail-
able, for those properties we will use the values for benzene,
an organic molecule that has a similar structure. Thus, for
instance, we use the spontaneous Raman differential cross
section for benzene,ds /dV=32.5310−34 m2/sr/molecule,
and we take the linewidths of Raman transitions in benzene
to estimateGb,1011 Hz.

We first determine the strength of the Raman couplingRij8 ,
we can do that in two ways, assuming in either case that only
a few intermediate states contribute: first, using Eq.(2) and
taking m,ea0 with a0 being the Bohr radius,

uRij8 u ,
m2

"2n
. 4 3 10−6 C2 m2/J2 s, s48d

and second using the Kramers-Heisenberg formula for the
differential scattering cross section applied to spontaneous
Raman scattering:

uRij8 u ,
4pe0c

2

"n2 Î ds

dV
. 0.353 10−6 C2 m2/J2 s. s49d

So we will takeuRij8 u,10−6 C2 m2/J2 s. Next we determine
the field density and photon density from the expression for
the field intensity(power/area):

I =
1

2
vepe0uEau2 =

1

4
vs"nd

uau2

V
. s50d

For strong lasers we could take the typical intensities to be
I ,1012 W m−2, in which case we get

uEau2 , 5 3 1014 N2 C−2,
n

V
=

uau2

V
. 5 3 1022 m−3.

s51d

Taking all the input fields to have similar intensities and
assuming natural linewidthGb,1011 Hz and decoherence
rateG,1013–1014 Hz,

Buju2 =
4g2

GGb
,

4uR128 u2uEau2

GGb
, 10−8. s52d

Indeed for this choice of parameters we are justified in taking
the weak-excitation limitBuju2!1, and in fact this will be
valid numerically until the field intensities increase to about
1016 W m−2. We note that this is the intensity level at which
cascade breakdown of air occurs at STP[11] and in reality
even much lower intensities,1012 W m−2 would vaporize
the spores and therefore would be too strong; thus, our weak-
field assumption covers the physically realistic regimes. Thus
we are quite justified in setting 1+Buju2.1.

Finally we address the issue of the interaction times, since
many of our results assume short interaction times. In the
case of pulsed inputs,G−1 sets the limits on the pulse dura-
tion to beDt3,10−13 s, which is certainly within the bounds
of experimental capabilities using femtosecond pulses. In the
case of propagation in free space, taking the dimension of an
anthrax sporeL,10−6 m as the interaction length we find

LANGEVIN ANALYSIS OF FUNDAMENTAL NOISE… PHYSICAL REVIEW A 71, 013802(2005)

013802-7



L /v,10−15,G−1. In either case the constraints of short in-
teraction times are likely to be satisfied for physical regimes
of interest.

B. Signal and noise

The main observation we have from our calculations is
that when the duration of interaction between the signal-
generating field and the Raman-active mediumDt=Dt3, L /v
is short compared toG−1, the signal and the noise due to the
medium have essentially the same theoretical description in-
dependent of the various experimental scenarios that we con-
sidered:

n4 . j2C2Dt2 .
NT

2uR43R12u2n1n2n3Dt2

G2
,

dn4
2 .

g2Dt2

2
FBuju42DNN

sG + Gbd
+

2DTT
G

G
. n4

28sG − Gbd
NTGb

, s53d

where we have usedBuju2!1 to setN0.NT andC.C; we
also noted that the term involvingDNN is smaller by a factor
of Buju2 than the one involvingDTT and hence we only re-
tained the latter.

The exception to the above expressions was the case of
continuous-wave input in a cavity for which we got a steady-
state signal and noise given by

n4 .
NT

2uR43R12u2n1n2n3

G2

1

g2 ,

s54d

dn4
2 . n4

28gsG − Gbd
NTGGb

.

The signal has the same form as the other cases withDt
→g−1. But the fluctuations differ by a factor ofg /G. Since
typically g!G, the noise noise will be less in this case, and
becauseg−1 is greater than the short-time limits in the other
cases, the signal is bigger. In addition to this, given the fact
that there are no major constraints on the duration of the
irradiations apart from their possible destruction of the
sample, this scenario seems to be the best one from the
signal-to-noise perspective. However, that conclusion has to
be moderated by the fact that when all three input fields
happen simultaneously; there can be significant contributions
from the nonresonant terms in our interaction Hamiltonian in
Eq. (1), particularly if we cannot achieve two-photon Raman
resonance. This is where the sequential pulse scheme as in
FAST CARS has an advantage.

We can recast our expressions for the signal and fluctua-
tions in terms of macroscopic variables. First using Eq.(3)
and the definition of classical field amplitudeEl =Elal we
write the signal in terms of the classical field amplitudes:

uE4u2 = S n4

2e0ep
D2

fxs3dg2uE1u2uE2u2uE3u2Dt2, s55d

whereDt=Dt3, L /v, g−1 depending on the experimental con-
figuration. Written this way we see that our expression for
the signal is consistent with what we would get if we inte-
grated the classical equation(4) for the slowly varying am-
plitude with appropriate assumptions. A more practical rep-
resentation would be in terms of the input intensities using
Eq. (50):

I4 = S n4

ce0
2D2

fxs3dg2I1I2I3Dt2

dI4
2 = I4

28sG − Gbd
GbNT

Sg

G
for cw and cavityD . s56d

At this point we validate numerically the assumption of
weak signal relative to the input fields. Using the parameters
in the previous subsection we find the third-order suscepti-
bility to be xs3d,10−34 C4 N−3 m−2. Taking all the input
fields to have the same intensityI i . I1, I2, I3 and the ratio
of the signal intensity to the input field intensity is

I4

I i
. 10−10I i

2Dt2. s57d

For the short interaction times that we consider,Dt
.10−13 s, and input field intensities ofI i ,1012 W m−2, this
works out to beI4.10−12I i. This shows that even for higher
input field intensities and increased density of active mol-
ecules, the signal field would still remain relatively weak.

C. Comparison with shot noise

Starting with the expression we derived for the generated
field, we can write the operator for the generated field in
terms of the input fields:

â4 =
NTuR43R12uDt

G
â1â2

†â3. s58d

Then noting that

a4
†a4 ~ n1sn2 + 1dn3,

s59d
a4

†a4a4
†a4 ~ sn1

2 + n1dsn2
2 + 3n2 + 1dsn3

2 + n3d,

and on assuming similar and large photon numbers in the
input field,n1,n2,n3=ni @1, we find that the variance cor-
responding to the shot noise is

dnsshotd
2 . SNTuR43R12uDt

G
D4

3 3n5 . 3
n4

2

ni
. s60d

Therefore the ratio of the medium noise and the shot noise
is

dn2

dnsshotd
2 .

8sG − Gbd
3Gb

ni/V

NT/V
. s61d

Using the numerical values that we considered earlier we
find
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dn2

dnsshotd
2 . 10−2 − 10−1, s62d

which shows that the noise due to the medium is less than
the shot noise. The shot noise increases with increasing input
field intensities while the medium noise increases with in-
creasing number of particles. But in the ratio it is interesting
that the behavior is exactly the opposite; the weight of the
shot noise decreases with increasing intensity of the input
fields while the weight of the medium noise decreases with
increasing density of the medium. Therefore when the field
intensity becomes very strong for a given medium density,
shot noise could become lesser, but as we noted earlier the
intensities cannot be much stronger than what we already
considered without destroying the sample completely. On the
other hand, densities of active particles could be higher in
other medium of interest. In the case of cw inputs in a cavity
we have an advantage that the medium noise is further re-
duced by a factor ofg /G.

VIII. CONCLUSION

We developed a model based on Langevin equations
which allowed us to get a purely analytic description of the
signal and the quantum noise for coherent anti-Stokes Ra-
man spectroscopy. If we use sequential pulses(as in FAST
CARS) or we are close to two-photon resonance, the non-
resonant terms would not be important and the quantum
noise arising from the finite lifetimes and coherence times of
the atoms and molecules would be a dominant source of
noise. When interaction time between the input fields and the
medium is short, we found that the signal and medium noise
have the same behavior in free space or in a cavity and with
pulsed inputs or with continuous waves.

In particular we showed that if the driving fields do not
vary much and the signal field is weak in comparison, the
shot noise which represents the fundamental limits of noise
is larger than the quantum noise due to the medium, and so
the latter is not a limiting factor. Using a cavity to achieve
steady state with continuous-wave inputs leads to enhanced
signal and lesser medium noise; this would be important
close to two-photon resonance and the nonresonant terms do
not contribute to the background noise.

Our calculations should be particularly relevant for novel
experiments with newly developed femtosecond lasers and
for fast spectroscopic characterizations of microscopic agents
in the air which could be organic ones like anthrax spores or
inorganic suspensions or trace contaminants.

Although our calculations in this paper were specific to
CARS, the model we developed should be applicable to most
coherent Raman schemes with minor changes. We did not
resort to the commonly used adiabatic elimination when cal-
culating the noise and we point out the significant errors that
would arise from such an approximation. Thereby we set the
grounds for a more accurate understanding of quantum noise
in stimulated Raman spectroscopy. In the regime of short
interaction times we achieved a completely analytical de-
scription. But the Langevin equations we set up in our model

describe a much broader physical regime, and the solutions
in general will have to be found numerically.
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APPENDIX A: DIFFUSION COEFFICIENTS

A quantum Langevin equations for an operatorx̂std has
the general structure

ẋ̂std = Âxstd + F̂xstd, sA1d

with a deterministic partÂx [not to be confused with the field

operator defined in Eq.(5)] and a stochastic partF̂x. The
diffusion coefficients 2Dxy=kFxFyl associated with these
equations are calculated using the generalized fluctuation-
dissipation theorem[6,12], often called the Einstein rela-
tions:

dtkx̂ŷl = kF̂xF̂yl + kx̂Âyl + kÂxŷl. sA2d

Thenonzerodiffusion coefficients, corresponding to Eqs.(6)
for the microscopic atomic variables, are

2Ds†s = s2G − Gbdkŝbl,

2Dss† = 2Gkŝcl + Gbkŝbl,

sA3d
2Dsb = − 2Dsc = Gbkŝl,

2Dcc = 2Dbb = − 2Dbc = Gbkŝbl.

From these, using the definitions in Eq.(10), the nonvanish-
ing diffusion coefficients for the macroscopic collective

atomic operatorsM̂ and N̂=N̂b−N̂c are immediately ob-
tained:

2DNN = 4GbkN̂bl,

2DM̂†M = s2G − GbdkN̂bl,

sA4d
2DMN = 2GbkM̂l,

2DMM† = 2GkN̂cl + GbkN̂bl.

In transforming toc numbers, by normal ordering, all the
moments for the noise must remain unaltered. Gaussian
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noise is determined by the first two moments; the first mo-
ment(i.e., the mean) vanishes, and the second moments must
have the same time evolution for a pair of operatorsx̂, ŷ in
normal orderand theirc-number equivalents:

dtkx̂ŷl = dtkxyl. sA5d

The fluctuation-dissipation theorem, Eq.(A2), and its
classical counterpart thereby relate thec-number diffusion
coefficients to the operator diffusion coefficients:

kFxFyl = kF̂xF̂yl + kx̂Âyl + kÂxŷl − kxAyl − kAxyl.

sA6d

Normal ordering of kx̂Âyl+kÂxŷl gives some additional
terms, and ifx̂, ŷ arenot in normal order, we need to replace
dtkx̂ŷl→dtkŷx̂l=dtkx̂ŷl−dtfx,yg. This determines all the non-
vanishingc-number diffusion coefficients for the collective
atomic variables:

2DNN = 2GbkNT + Nl − 4gksM * A + A * Mdl,

2DM*M = SG −
1

2
GbDkNT + Nl, sA7d

2DMM = 2gkMAl.

APPENDIX B: NOISE SPECTRUM

The Fourier transforms of the noise functions are defined
by

Fsvd =
1

2p
E dteivtFstd, Fstd =E dve−ivtFsvd.

sB1d

For stationary processes the second moments or two-time
correlations depend only on the time difference:kFistdFjst
+tdl=Kstd. In the frequency domain this defines the spectral
densityPsvd of the noise:

kFisvdFjsv8dl = dsv + v8dPijsvd. sB2d

The two-time correlation and the spectral densities are time-
frequency Fourier transforms of each other:

Pijsvd =
1

2p
E dteivtKstd, Kstd =E dte−ivtPijsvd.

The fluctuations considered in this paper are characterized
either byd correlations or by exponentially decaying corre-
lations as a function of time difference for which the spectral
densities are, respectively, constant and Lorentzian:

Kstd = 2Dijdstd ⇒ Pij = 2Dij
1

2p
,

sB3d

Kstd = e−gutu ⇒ Pij =
2g

g2 + v2

1

2p
.

APPENDIX C: PROPAGATING FIELDS

In order to describe fields propagating through a sample
of atoms in free space, we use the technique of Drummond
and Carter[10]. We illustrate this technique by considering
the propagation of the signal fieldn4, with wave numberk, in
the direction of propagation(the z axis); the part of the total
Hamiltonian involving this field is

Ĥ = "na4
†a4 + "gfâ4ŝ† + H.a.g. sC1d

For simplicity we have assumed a real interaction strength
g=R43a3

* = uR43a3
* u. The interaction lengthL is divided into

2m+1 equal segments of mean positionszl = lL / s2m+1d for
l =−m, . . . ,m. The description of propagation requires mul-
tiple modes; a natural basis is provided by the normal modes
for periodic boundary conditions on the quantization length
L:

kn =
2pn

L
, n = − m, . . . ,m, sC2d

with corresponding creation and annihilation operatorscn
†

andcn. Thus we can write the Hamiltonian as a linear com-
bination of the sub-Hamiltonians for each discrete segment
summed over all the normal modes:

Ĥ = o
n

"ncn
†cn + "go

i,n,l
fcne

−iknzlŝ†sld + H.a.g. sC3d

The indexi accounts for the number of atoms in each seg-
ment, oi =NT/ s2m+1d. Introducing local operators for the
slowly varying field amplitude in each segment through a
discrete Fourier sum of the modes,

â4
sld =

1
Î2m+ 1

o
n=−m

m

cne
iknzl , sC4d

and the Hamiltonian can be written as

Ĥ = o
l

"nâ4
†sldâ4

sld + o
ll8

"nll8â4
†sldâ4

sl8d

+ "go
l

fÎ2m+ 1â4
†sldŝ†sld + H.a.g, sC5d

nll8 = o
n=−m

m
2pnc

s2m+ 1dL
expS2pinsl − l8d

2m+ 1
D . sC6d

The equation of motion for the slowly varying field ampli-
tude is then
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ȧ̂4
sld = inll8â4

sld − igÎ2m+ 1ŝ†si,ld. sC7d

We convert toc numbers and take the limit ofm→` so that
we have the correspondence

zl =
lL

2m+ 1
→ z,

Î2m+ 1a4
l → a4sz,td,

sC8d

inll8
Î2m+ 1→ c

]

]z
,

− i lim
m→`

s2m+ 1do
i

us†slduzl→z → Msz,td,

and thereby we arrive at the space-time-dependent equation
of motion for the slowly varying amplitude of the propagat-
ing field:

S ]

]t
+

c

n

]

]z
Da4sz,td = gMsz,td. sC9d

In the same way the space-time-dependent noise operators
are defined by

F̂xsz,td = lim
m→`

s2m+ 1do
i

F̂x
ilstd sC10d

and analogously theirc-number counterparts. The space-
time-dependentc-number diffusion correlations

kFxsz,tdFysz,tdl = lim
m→`

s2m+ 1d2o
i j

ukF x
ilstdF y

jl8stdluzl→z,zl8→z

= LkFxstdFystdldsz− z8d, sC11d

and in the last step we used the correspondence

lim
m→`

s2m+ 1d
L

dll8 = dsz− z8d. sC12d

APPENDIX D: PROBLEMS IN USING ADIABATIC
ELIMINATION IN COMPUTING NOISE

We pointed out earlier that adiabatic elimination of atomic
variables cannot be applied to the fluctuations; we will now
briefly discuss the consequences of doing so. We set 1
+Buju2.1 as justified earlier. We eliminate the atomic vari-
ables and write the consequent equation for the field variable
inclusive ofboth the mean and fluctuation:

Ȧ = − gsA − jd − CA + FA,

FA =
g

G
FFM +

gA
Gb
HFN −

2g

G
FTJG . sD1d

In the case of a cavity, using thedst− t8d correlation of the
noise, we find

dS2sDt3d = g21 − e−2gDt3

2g
F2DTT

G2 +
Buju42DNN

GbG
G ,

While this reproduces the long-term steady-state behavior
correctly, the short-time behavior is linear in time, contrary
to the quadratic dependence that we found earlier.

The problem is more serious when we consider the free
space problem. We can understand it by considering the
equation for the fluctuation in the field variable:

s]t + v]zddAsz,td = FAsz,td. sD2d

On integrating in the frequency domain and using the bound-
ary conditiondAs0,td=0 we find that

dAsL,td =
1

v
E

0

L

dzFASz,t −
n

c
sL − zdD . sD3d

As shown in Appendix C the second moments of the noise
ared correlated inspaceas well as intime,

kFAsz,tdFAsz8,t8dl = 2DAALdsz− z8ddst − t8d,

so that the second moments of the fluctuations of the signal
at the output are

kdAsL,tddAsL,t8dl = 2DAA
L2

v2dst − t8d. sD4d

At equal times this diverges and, therefore, so does the vari-
ancedS2, and this underscores why the adiabatic approxima-
tion is inappropriate for describing the fluctuations.

APPENDIX E: FLUCTUATIONS FOR INTERACTION
IN A CAVITY

We show the details of the derivation when the interaction
takes place in a cavity. From Eqs.(27) and (29) we get

dS2sDtd = g2E
0

Dt

dtE
0

Dt

dt8e−gs2Dt−2t+td 3
1

2p

3E
−`

`

dVe−iV
f4g4uju42DNN + g2sGb

2 + V2d2DTTg

sG2 + V2dsGb
2 + V2d

,

sE1d

with t= t− t8. On doing a partial fraction decomposition and
carrying out the integrations

dS2sDtd =
2g2

2
F4g2uju42DNN

sG2 − Gb
2d S 1 − e−2gDt

2gsg + GbdGb

−
e−2gDt − e−sGb+gdDt

sGb
2 − g2dGb

−
1 − e−2gDt

2gsg + GdG

+
e−2gDt − e−sG+gdDt

sG2 − g2dGb
D + 2DTTS 1 − e−2gDt

2gsg + GdG

+
e−2gDt − e−sG+gdDt

sG2 − g2dGb
DG . sE2d

In the limit of short interaction timegDt!1, it is easy to see
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that on doing a Taylor expansion of the exponentials as a
function of gDt the zeroth- and first-order terms cancel out.
For example, consider the coefficient of 2DTT in the last line
which expanded to second order gives

− 2g2Dt2

2gsg + GbdGb
−

4g2Dt2 − sGb + gd2Dt2

2sGb − gdsg + GbdGb
=

Dt2

G
. sE3d

Thereby in this limit of short pulses we arrive at the expres-
sion for dS2sDtd in Eq. (30).

In the opposite limit of long-time interaction timesgDt
@1 we get

dS2sDtd .
g2

2
F 2DTT

gsg + GdG
+

4g2uju42DNN
sG2 − Gb

2d
S 1

gsg + GbdGb

−
1

gsg + GdGDG . sE4d

In the case of sequential pulsed input we allow for decay of
the coherence and excitation and we get the expression in
Eq. (31). In the case of continuous-wave inputs, if we take
takeg!G ,Gb, we reproduce Eq.(40).
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