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We use a Langevin approach to analyze the quantum noise in coherent anti-Stokes Raman spectroscopy in
several experimental scenarios: with continuous-wave input fields acting simultaneously and with fast sequen-
tial pulsed lasers where one field scatters off the coherence generated by other fields and for interactions within
a cavity and in free space. In all cases, the signal and quantum noise due to spontaneous decay and decoherence
in the medium are shown to be described by the same general expression. Our theory in particular shows that
for short interaction times, the medium noise is not important and the efficiency is limited only by the intrinsic
quantum nature of the photon. We obtain fully analytic resmitioutmaking an adiabatic approximation; the
fluctuations of the medium and the fields are solved self-consistently.
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I. INTRODUCTION review through the literaturid,4] shows that there have been

The field of Raman spectroscopy is a very mature one thgf'€thods developed to overcome almost every possible labo-
boasts a vast literature which over time has developed andCry source of noise be it be unstable lasers or nonresonant
explored countless ingenious improvements and techniquedckground signals, perhaps not all with the same technique
to tweak out better and stronger signals. Much of the motiPut the point is that such techniques exist. But in the end
vation for this lies in the fact that Raman scattering inevita-tn€re is still the inherent quantum noise of the system which
bly involves the structure of the scattering medium, becaust® unavoidable. There are two sources for this. The first is
the incoming and outgoing signals differ by the frequency oftruly fundamental in the sense that it represents the lower

some internal mode of the constituent molecules or atomd/Mit of signal detection; this is the shot noise which is asso-
thereby making it an invaluable tool for spectroscopy. Ciated with Poisson statistics of lasers used far above thresh-

old. The second arises from the spontaneous emission and

. : "3He decoherence associated with excited atoms and mol-
scattering were long overcome by stimulated scattering,

) . A . ules created during all Raman scattering processes. Often
through nonlinear interactions. Signal has been enhanceﬁf 9 gp

h h ith i | q tth is second source of noise, which we will refer to as me-
through resonance with some specific natural modes of th§j,m noise, is much larger than the shot noise and therefore

molecules. In particular the technique of coherent antiig the limiting quantum noise.

Stokes Raman scatteritGARS) has emerged as one of the  Thys our goal in this paper is to undertake a comprehen-
most useful Raman techniques; it involves two incomingsjve study using general Langevin methods to analyze the
fields that create coherence in the medium which therebyuantum noise in CARS and FAST CARS. Our approach and
enhances the scattered signal. The generated field being anbnsiderations have the advantage of being general and may
Stokes eliminates fluorescence problems, and resonance esasily be used to study other coherent Raman processes. We
hancement is also usually possible. study several experimental scenarios allowing for interac-
One way to improve on existing CARS techniques hagions within or without a cavity and for pulsed or continuous-
been recently proposgd] which uses sequential femtosec- wave input fields. We find a remarkable similarity in behav-
ond pulses wherebgnaximalcoherence is created via adap- ior of all these cases, suggesting that our results probably
tive algorithms with one set of lasers and then the medium ifiave a broader validity beyond the configurations we con-
probed by another laser. The technique called the femtosesider. In particular, we find that the mediusolven) noise is
ond adaptive spectroscopic technigdleAST) CARS has not important for FAST CARS whose efficiency is limited by
been applied in preliminary experimenf] and further the intrinsic quantum character of the photon.
promises to increase the CARS Raman signal. Experimental In Secs. Il and Ill we define the problem in terms of
work is underway at several laboratories. The method offershird-order nonlinear interactions and Langevin equations,
hope for developing a way of detectirin real time dan-  and in Sec. IV we describe our model in detail, laying out the
gerous biological spores like anthrax. equations and assumptions that we use. In Sec. V we con-
For any spectroscopic method its relevancy and effectivesider the experiments using sequential femtosecond pulses
ness is eventually defined by the signal/noise ratio. A briefand in Sec. VI we discuss experiments involving concurrent
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I be about the same for all laser fields. The decoherence rate
between level® andc is denoted byl and the depopulation
rate from levebb to levelc by I'y; damping to other levels is
MY Vs |Va assumed negligible.
It will help to establish a relation with macroscopic quan-
b tities. The classical field amplitudes arg=&q; for

l ll'b IF coherent-state expectations=(3;). The third-order suscep-

tibility is defined to be

C

RiaRi> N
(A-il)V’
with expected population difference between the two levels

N=Np—N.. The Maxwell equation for the slowly varying
amplltude of the generated field is

FIG. 1. CARS scheme with three input fields of frequengy X(s)(_
vy, andvz and a generated signal field= v, + v3—v,. The radiative
damping rate from levdb to levelc is I', and the dephasing rate of
the coherence between levélandcis T

3

Vg, V1, = Vo, V3) =

continuous-wave input fields. Then in Sec. VII we present a
detailed discussion of our results and their implications, and ( d a) vy
4=

we provide numerical estimates based on realistic experi- P XVE EoEs, (4)

ot 0z 260 p
mental parameters. —
with the velocity in the mediunv=c/ve,. We note that the
definition of the third-order susceptibility as such tacitly as-

sumes that only the the lowest level has significant popula-

We will consider stimulated Raman scattering in thellOn at any given time.
CARS configuration(see Fig. 1 involving three input fields
a, ay, _é3 and one generated f_ie&i with corresponding fre- lll. LANGEVIN EQUATIONS OF MOTION
quenciesvi-; 5 3 4 The interaction Hamiltonian is written in
terms of the two Raman-coupled atomic or molecular levels The three input fields, v,, and v; are typically strong
|b) and|c), energieshw, and%w,, and lowering operatod  laser fields far above threshold; we will treat themckessi-
=|c)Xbl: cal fields and replac@y, 3 — ay(, 3. Considerable simplifi-
cation is achieved by defining

II. NONLINEAR INTERACTION

V= #(R2,85 + Ryzala,) 6T + Hoa., 1) . ..
) ~  Rypagan + Rygazau(t)
Here and elsewhere the time arguments will be suppressed Alt) = )
where obvious in order to reduce clutteFhe exponential 9
factor signifies that all operators are in the interaction pic- .
ture; its argumeni\ = @+ vy = wpt v34 With wp= wp— ;. £= Ripaya, 9= |Rasc (5)
These particular combination of atomic and field frequencies g 4373l

in A implies that the Hamiltonian contains orfRaman reso-

nantterms and excludes all nonresonant terms. For the casghe normalizatiory has been chosen such tm{l) satisfies

of FAST CARS wherer, and v, pulses interact with the the boson commutation rules. Thus we can trsj like a
atoms beforevs, the nonresonant terms are simply notphoton field operator. The parametgrand ¢ being depen-
present. However, when all the fields are present simultadent only on the input fields will treated asnstantsn our
neously the permutations of the fields lead to 24 terms in thealculations. The Heisenberg-Langevin equations of motion

perturbation expansion which all contribute at the same ordefor the atomic operators are obtained from the interaction
[3]; in that case, we have in effect neglected the 20 remainHamiltionian:

ing terms which have nonresonant combinations of the fields ) o
and the atomic levels. If we are close to resonance, this is o=—(+iA)o+ig[o,— 0 JA+F,,
certainly justified; in fact, we will assume perfect two-photon
Raman resonance in this paper.

The Raman coupling constants are defined Ry

=R£165,
-1 (i€ (i - €2) (g - £2) (4 - £1)

=

+
h? i (wjc + 1) (wjc = 11)

oy, = — Ty, + ig[ATG — GTA] + Fy,

G.=Tyop — ig[AT6 - 5TA] + F.. (6)

Rip= ) The coherence operator here differs from that in @yby a

phase factofr(t)e 4! — &(t), anday, ) are the population op-
2 erators for the atomic levels. Tis are the Langevin noise
and likewise forR,s. Theg are unit polarization of the fields, operators. They have vanishing first momexEt))=0,

w are the dipole momentg, labels the intermediate states, since the entropy of the system cannot be lowered by noise
and &=\/(hv)/(2€¢€,V) are the field quantization factors [5]. The second moments are taken todeorrelated in time
over volumeV in a medium of dielectric constaef takento  corresponding to Markovian white noise:
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E OB (+1) = 9D, S(+ — +/ the Glauber-Sudarshdn representation of a thermal distri-
(FiOF;(t)) = 2D; (L - 1) ™ bution which happens to be a Gaussian distribution of zero
The Dj; are the diffusion coefficients in analogy with classi- mean. This means that the Gaussian moment theorem applies
cal Langevin equations. The diffusion coefficients associatednd the first and second moments suffice to determine the
with Eqgs. (6) are calculated using the generalized distribution completely.
fluctuation-dissipation theorei®] in Appendix A.

The Langevin equation for the signal field operator is IV. EQUATIONS AND ASSUMPTIONS OF THE MODEL

54: - Y8, - iRZ3a3Er+ ﬁa . (8) We consider small fluctuations about the mean values for
) S ! . both atomic and field variable$1(t) = M(t) + SM(t), M(t)
Here we included an heuristic field damping ratéo allow =Ny(t)+SN(t), and A(t)=Ay(t) + SA(t). It is convenient to
for an atom-field interaction inside a cavity. From this equa-gefine two real variable®(t) =M * (t).Aq(t) + M (1) Ayt and
tion, we can construct the equation S(t)=].A(t)|?, with linearized fluctuations

A= A8 -igs. 9) 8S(t) = Ag(t) SA* (1) + Ap(t) SA(D),

The effects of a thermal heat bath that accounts for a nonva-

nishing IA:a4 are neglected by assuming low temperature. In
this paper we will also assunt@o-photon Raman resonance .
and r:hgreby seh=0. P ]:T(t) = Ao(t)ﬁM(t) + AO(t)]:M(t)

We next define macroscopic variables by summing ovefrhe relation to the properties of the generated fiejdthat
the operators for all the particlgatoms/moleculgsin the e are finally interested in are as follows: The strength of the

STt) = Ag(H) oM * (1) + Ag(t) SM(1), (12

medium, signal field, given by the number of generated photons, and
S T the atomic noise in the photon number, quantified byats-
M=-iX o, Np) = > Ob(c)s (10) ance are determined by
and the population sum and difference operat&rrs Nb ny(t) = (aZ(t)a(t)) =|Aq(t) — &2,
+N; andN=N,—-N,.. The equations of motion for the collec- (13)
tive atomic variables and the field are then 2 Ny(t) 5
ong(t) = m(&? ().
0

M=-TM+gNA+F,
To reduce clutter we will often leave out the expectation
- A . mm A brackets, being obvious from the context. The variance is
N=-Tp(N+Np) - 29[A* M+ M* A]+Fy, obviously linearized and neglects relatively small terms qua-
(11 dratic in the correlations. We will primarily consider regimes
S where the generated field, is much weaker than the input
Nr=0, fields (as we justify numerically in Sec. VII Band therefore
. we will replace|.A¢|?>=|&? where appropriate and consistent.
A=-yA-§+gM,
A. Adiabatic elimination of the averages

with the total number of active particle(sf\IT) being con- of atomic variables
served. The associated diffusion coefficients are shown in . . _—
Appendix A. Since the fluctuations have vanishing average, we can

write separate equations for the mean and the linear fluctua-
tions. The equations for the averages can be had by simply
Illeaving out the Langevin forces:

Solution of these equations is facilitated by transforming
them into equivalentc-number equationg7-9]. This is
achieved by putting all the operators in normal order chose
to be AT, MT, N, M, A which establishes an unique corre- dMo=-T Mg+ gNoAo,
spondence between the quantum and classical equations.

Since the equations are already in normal order the operators dNo= = Tp(No+ Nyp) = 29[ AgMo+ MpAol,  (14)
are simply replaced with their classical counterpads,
M*, N, M, A. _

The c-number noise functions satisfyF(t))=0 and G Ao=~UAg= &) +gMo.
(F(t)F(t'))=2D8s(t—1’) just like their operator counterparts. Atomic and molecular transitions typically occur on a faster
The c-number diffusion coefficients will, however, acquire time scale than the variations in a radiation field, which
additional terms arising from normal ordering; all the nonva-means that the medium will adiabatically follow the field for
nishing coefficients are listed in Appendix A. The corre- weak coupling. Even when using fast pulses, the coherence
sponding properties of the noise in the frequency domain argenerating pulses can be taken to be of sufficiently long du-
summarized in Appendix B. It is worth mentioning here thatration for this to be true. Therefore taking averages over
the expectations in the-number representation are now in intermediate time scales, the time derivatives in the equa-

013802-3



DAS et al. PHYSICAL REVIEW A 71, 013802(2005

tions for the averages of the medium variahley, and N,  pation B|¢?<1, and therefore in effect we can treat these
may be neglected in what is called adiabatic eliminafi®in  coefficients as constants.

and we obtain algebraic relations for the coarse-grained av- o
C. Free space description

erages:
The equations above are appropriate for describing ex-
No=- Ny 0= - E& (15) periments conducted in a cavity of damping ratdédowever,
1+B|g? g1+B|g*’ if we wish to describe experiments in free space, we have to

allow for field propagation through the medium and effec-

2|42 i i 3
where we setdo*=|¢[* as dl_scussed earlier. We _defm_e Sometively replacey— vd,. An approach discussed by Drummond
parameters here that we will use often and which will serve : ! .
to simplify our expressions considerably: and Cartef8,10] outlined in Appendix C, leads to the appro-

priate space-time equation for the field variable:
4g?

2
B=1, c= N%g (16 (@ +03) Az, ) = gM(z,1). (20
o ° _ . . This equation follows from Eq.C9) derived in Appendix C,
T_he parameteB is dimensionless an@ carries the_ dimen-  on assuming that all the input fields propagate collinearly in
S|or12 of inverse time. As we <_:orroborate numerically laterthe z direction and their amplitudes,, 5 vary little over the
B|£°<1, so the upper level is never strongly populated,nteraction lengthL—i.e., the length of the region over

—— imoli i 2.1 ; , : ,
No=-Nr and we can simplify by setting 1B{¢[*~1 in the  \hich the fields interact with the atoms—and therefore may
rest of the paper. Substituting the atomic mean values we g¢fs treated as constants.

an uncoupled equation for the average of the field variable:  Thys for experiments in free space, equations for the field
GAo=— Y Ag— &) - CA,. (17) variable in Eqs(17) and(18) are modified to

(d+vd) Ap(z,t) = = CAy(z 1),

i (21)
B. Fluctuations (d,+v3,) 3S(2,t) = gSTZY).

In describing the fluctuations, we cannot make arguments ) ) ]
for adiabatic elimination of the medium variables as we didThe equations for the atomic variables are formally un-
for the averages; this is due to the presence of the rapidighanged, but they now carry both position and time argument
varying noise functions. An attempt to make such an ap z,t); their spatial dependence arises through their interde-
proximation can lead to unphysical divergences in the correPendence on the field variable.
lations; we will discuss this issue in some detail in Appendix V. PULSED INPUTS
D. Therefore we solve coupled equations for the fluctuations '
for both the field and medium. We write the relevant equa- We first consider the case where the input laser fields are

tions in terms of the variableg and S: extremely short and fast pulses. In particular we take the
) pulses to arrive in sequence as is the case in FAST CARS
ST = =T 8T+ 295N| Aol* + gNo3S + Fr, [1]; the fieldsa, and a, are allowed to interact first with the
atoms for a durationt,, creating the coherence; then, after a
0N ==T N+ 2C5S — 2987+ F (180  delay Aty the field a5 occurs for timeAts. This means that
the atomic variables can now only depend on the first two
58S = — y3S + goT. fields, so we replacely— & in Egs.(17) and(19) and also

set85=0 in the equations for the fluctuations of atomic vari-
In writing these equations, we have treatéglas a constant. ables:
We will see that in all the cases we consider in this paper this _
assumption is valid, because eithég will have an unvary- 8T= =T8T + 2g6N1é* + Fr,
ing steady state value or it will satisflly=¢, even as a (22)
function of position when propagation in free space is inov- KON = =T',oN = 2967+ Fy.
Ived (see next subsectipnlt is clear from the equations
above that the fluctuations can be fully expressed in terms Oste
the correlations of the variabl&andNV. Using the results in
Appendix A, we find that the two variables are uncorrelatedz
with each other but the strengths of their autocorrelations are
specified by the diffusion coefficients

The main premise for this scenario is that when a rapid
guence of fast femtosecond pulses are used, thedield
catters off the generated coherence before it has time to
ecay significantly. Thus for time intervals such tht,
Atg<T71, Fgl the generated coherence may be taken to be
constant. For longer durations, however, we have to allow

2Dr=2(I" - T,)N{B|&*, for decay of the coherenc#1, in Eq. (15).
(19 During the signal-generating cycle wheg is present the
2D = AT N B2 mean coherence is described by
aMo==TMo—g(Ag— No. (23)

where we used the expressions for the averages if15y.
In writing these expressions we used the weak-field approxiAfter the coherence generating pulses are turned off, the
mation. A= ¢ and the assumption of weak upper level occu-value of generated coherence from E(L5), M(0)

013802-4



LANGEVIN ANALYSIS OF FUNDAMENTAL NOISE... PHYSICAL REVIEW A 71, 013802(2005

=géN,/T" can be taken as the initial value of the coherenceound that a Taylor expansion leads to an exact cancellation
in the above equatiotf Aty=0) and since initially there is of the terms linear if\t; and we get a quadratic dependence
no signal field4,(0)=¢&. It is then easy to see that the ratio of on the interaction time:
the magnitude of the first term to that of the second term is 5 4
~|&/)Ay— € which is large for weak generated field and g’At5| Blé*2Dyy  2Dgr
+ . (30)
2 (I'+Ty) r

. 582(At3) =
short duration pulses. Therefore we can neglect the second

term and take the driving coherence to simply decay expo-
nentially from the moment the generating fields are turned? conspicuous feature of this limit is thatis absent in the

off Mo(t) :Mo(O)e_Ft.
The equation for the average field then becomes

dAg=— Y A= & - Cee ™. (24)

The fluctuations will likewise decay since the diffusion ¢
efficients depend on the averag¥g and M. The diffusion
coefficients in Eq(19) will then have an exponentially de-
caying time dependence),,~e ' and D, ~e Tt We

note, however, that there is no constraint on the duratign

of the coherence generating pulses, so they can be taken to 2
be sufficiently long to create a steady state value of the co-
herence before they are turned off, thereby justifying adia

batic elimination.

A. Pules: Interaction in a cavity

expressions for both the mean and fluctuation. Thus, for
pulses of duration shorter than the cavity damping time, the
presence of the cavity has no effect on the signal or its asso-
ciated noise due to the medium. This short-pulse limit im-

o- Plies the hierarchy of time scalgs™>T"", It Atg,

In the opposite limit of long pulse duratioats>y™t
>T 1 Fgl the fluctuation is approximately

8S%(Atg) =

g’Ate s { 2D n

2D,
Bl&* + . (31

Here we set the depopulation rate and decoherence rates to

be equall’=T",, to mask unnecessary details and highlight

the main feature, which is that both the mean and fluctua-
tions essentially vanish towards the end of a long third pulse
as the driving coherence disappears. The conclusion is that,

The mean value of the field variable after the third pulse'eégardless of the duration of the third pulse, a significant

Ag(Ats) is easily obtained by integrating E4):

e Tl _ oAty

AglAty - = - Ce—————. (25)
y=T

The phase of4, is given by that of¢, since Ay/ € is real.

When the duration of the third pulse is shaktg<T*:
Ap(Atg) — € = — CéAt,. (26)
The equal time fluctuations of the field are given by
Aty Aty ,
85%(Aty) = ¢? f dt f dt’ e YA ST STTE)).
0 0

(27)

signal field is generated only during times satisfyiid .,
Ik

B. Pulses: Interaction in free space

The last subsection showed that increasing the duration of
the interaction between the third pulse and the atoms will
make a difference only up to a point, since we are limited by
the decay time of the coherence. In free space, this means
that we will not get a stronger sustained signal by simply
increasing the interaction length Therefore we will confine
ourselves to sample sizés<vI'™%, vT';%, and we will use
Eqg. (21) where, taking the coherence to remain unchanged
during the time of interaction, we sefy(z,t) — &

A time-frequency Fourier transform and subsequent inte-

In order to evaluate this we first take a Fourier transform ofgration over the interaction length gives

Egs.(22), the relevant definitions and properties of the fluc-
tuations and noise in the frequency domain are described in

Appendix B:
(I - iw) 6T w) = 29|&26M o) + FAw),

(Tp—iw)oMo) = - 296T(w) + Fylw), (28)
which we then solve to get

[29]&°Fp+ (T — i) Fo]
67 (w) =
(@) T -iw)(y—iw)

Assuming weak excitation we sdfl+4g?&/[T -iw][T,

(29)

—-iw]|?=1. Using this expression fa¥7{w) we can evaluate

(miw+vd)Ayz,w) = - CéSw)

0 AO(L,w):éwL’vg[l—c%], (32

and an inverse transform yields the delta functifn-L/v),
which simply tells us that time is a redundant parameter and
the field can be specified by its position alone:

L
Ao(L) =&~ ce, (33

Likewise for the variance we consider the equations for

the integrals in Eq(27). The details of the calculations are the fluctuations in the frequency domain. Since we set
shown in Appendix E. The general result result derived theredo(z,t) =§, the equations are given simply by Eg8). Sub-
is not particularly illuminating; instead, here we consider thestituting the expressiod 7 (w) from Eq.(29) into the equa-

relevant limiting cases. In the short-pulse linit;<I""%, we

tion for the field fluctuation,
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—ilw+0vd,65(z,w) =96 T(Z, w), (34 55(0) [T - i0)gF A w) + 207 Ao Fw)]
w) = ’
and integrating over the interaction lendthwe get the spec- detMg
tral density of the noise: (39
detMp= T -iw)I,-iw)(y-iw).
1 L2[4g*2D 0+ T3+ 0?)2Dy] i e

SF(L,w) =

2702 T2+ o?) (I + ?) ' In computing the determinant in the denominator we intro-
duced some simplifications using the arguments leading up

The autocorrelation at equal times obtained by doing a parto Eq. (38) and we neglected the frequency dependence in

tial fraction decomposition and an inverse Fourier transformhe term proportional t@|.4,/2 [refer to the comment follow-

defines the variance ing Eq. (29)]. Squaring this gives the power spectrgAp-

5 2 4 pendix B and then a Fourier transform and the adiabatic
gt [Bli' f?;/v + 2?77] (35)  assumptiony<I',I', yields the steady-state fluctuations
b

We see that both the mean and variance are identical to what 20t) 9_2 2DNN o 4, 2P1T

; . i . 54(t) Blg*+ . (40)

we found in the short-pulse limit when the interaction took 2y

place inside a cavity, bearing in mind that hérk defines

the time of interaction. This reaffirms the conclusion that forWhile the adiabatic assumption was not necessary it gave a

short pulses there is no real advantage in using a cavity. simpler expression; the more general expression is shown in
Appendix E. What sets this case apart from the rest is that
VI. CONTINUOUS-WAVE (cw) INPUTS both the signal field and the variance in the steady state de-

We now consider the cases where all three input field§end on the cavity lifetimey™ and that the dependence is
occur continuously and simultaneously. In this case steadyinear.
state values for the medium variables may be considered,
and their decay does not put limits on the interaction time as B. Continuous waves: Interaction in free space
it did previously when using sequential pulses. But the cal- ) . .
cuIati(?n of fluc)t/uations is c?ompc?icated b?/ the fact that the In order to find the signal strength, we do a Fourier trans-
equations for the medium variables and the field variable d(gorm of Eq. (2D,
not decouple as they did for sequential pulses.

8S(L)? =

202

(_ |(U + U&Z)AO(Z! 0)) =- CAO(ZI w)! (41)
A. Continuous waves: Interaction in a cavity

The average is found by integrating Bd7), exactly in and integrate it over the interaction lendtho get

the form it is written, with the initial conditiondy(0)=¢: Ao(L, ) = €9 4,(0,w)eCH | (42)
1 - (Ot
Ao(t) —é= —wa—c)- (36)  As in the analogous case in a cavity, the time parameter is

seen to be redundant after an inverse Fourier transform and
Unlike the pulsed case there are no obvious time constraintsye get simply
except those arising from possible damage to the sample by
prolonged exposure to the fields, so we can take the long- Ag(L) = ge7CHv, (43

time limit t—o and we get a steady-state signal i . )
In calculating the fluctuations we take the Fourier trans-

1 (37) form of the equations for the atomic variables as they appear
(y+C)’ in Egs.(18) and the field fluctuation as it appears in E2{l),
. ] ) keeping in mind that all the fluctuation and noise elements
We note that ify<C, the generated field essentially van- i thereafter carry an argument 6, ). The three coupled

ishes, which suggests that we need to haweC. In that  equations yield an equation for the field fluctuation:
case we can further use the assumption of weak signal field

to conclude that 2 :
29/ Fpy+ (Tp—iw)F,
[v(?z—iw—g(w)]éé‘zg[ 9|¢*Fp+ (Tp—iw) F7l

Ao—¢=-C¢

Ao-¢ C 1 .y - :
0_52_<1|:| Ag—E=—Cé&=. (38) =)y -iw)
¢ Y 0 (44)
The fluctuations are best determined by writing the three ith
coupled equations in the frequency domain in matrix form: wi
(T-iw) —20A> -aNg 6T Fr Glo) = ol49ClE + (T~ iw)gNy]
29 Tp-iw) -2C N | =| Fu|. T-i0)(y-iw)
-9 0 (y=iw) J| 85 0 We integrate this with respect to the spatial coordirzatnd
Inverting the coefficient matri  gives the solution thereby we get the spectral density
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1 L1 -e?RdGw]Lh X 1076 molecules m?, and the dimensions of the spore itself
SF(L,w) = Z;m are 1x2x 1 um?®. We will take all optical frequencies to be
in the visible rangey~ 2mc/\ =4 X 10,
4% g*2D o+ T2 + 022D 7 Since some of the properties of DPA are not easily avail-
(I + wz)(rg+ ) ' able, for t_hose properties we will u_se_the values for benzene,
an organic molecule that has a similar structure. Thus, for
We useB|&2<1 to simplify instance, we use the spontaneous Raman differential cross
— section for benzenedo/dQ2=32.5x 10734 m?/sr/molecule,

= (45  and we take the linewidths of Raman transitions in benzene
(I + w?) to estimatel’,~ 10 Hz.

We note this quantity achieves the largest magnitude when We first dete_rmme the strength qf th? Raman coupiR(jlg
©=0. In the case of short interaction lengfi./v <1 both we can do that in two ways, assuming in either case that only

the signal and variance resemble those we got in the case ?flf(e_:w lntwermedlf';;';]e st%te_s C?r:]mguf: f'r(‘;’.t' using &.and
pulsed inputs in free space: aKing u~eg With a, being the Bonr radius,

2RdG(w)] =

2
/ o 6 ~2 2/ 2
L L~ ——=4X10° C*mJFs, 48
AO(L):f—C§;, Ril h2v S (48)

and second using the Kramers-Heisenberg formula for the

) 1 12[49Yd°2D yp+ P2(T2 + 022D differential scattering cross section applied to spontaneous
S(Lw)=—— R ttering:
(L, w) Y %+ D2+ ) aman sca erlng2
dmeyc” | do
46 A PO LAY et 6 02 2
(46) Rl ~——2 \/dQ—0-35X 106 C2m2/Rs. (49)

In the opposite time limit of long interaction length
CL/v>1, we find that the expression for the average valueSo we will take|R}|~10"° C*m?/Fs. Next we determine
of the field variable4, tends to become increasingly smaller. the field density and photon density from the expression for
Equation(43) tells us the field intensity(power/area

ny(L) = |Ag(L) = g2 = &1 - )3, (47)

so that in this limit the input fields vanish and give way to
the signal field. Our model, however, does not allow us toFor strong lasers we could take the typical intensities to be
obtain an accurate expression for the variance in this limitl ~ 10> W m=2, in which case we get

This is because Eq$18) were based on the assumption that

|af?

1 1
| = §U5p50|5a|2 = Zv(ﬁv)v. (50)

|af?

Ag does not change significantly and the generated field is |ga|2 ~5x 10" N2C™2, n_le 5% 1072 m3.
relatively weak, and this is no longer true whierbecomes \
large. Yet based on the fact that average vallgedecreases (51)

over the lengthL and hence the diffusion coefficients also ) ) ) o "
decrease, we could expect that the noise contribution fromj@king all the input fields to have similar intensities and

: - el ot
the active medium will actually be lower farther along the assumlng()lg\atuorgl linewidtfi', ~ 10** Hz and decoherence
interaction length. rate["~10-10" Hz,

VIl. DISCUSSION OF RESULTS, INFERENCES, - I'Ty I'Ty
AND ASSUMPTIONS

10°8. (52

Indeed for this choice of parameters we are justified in taking

We will now discuss in some detail the physical implica- the weak-excitation limit8|¢?<1, and in fact this will be
tions of the results we obtained in the previous sections andalid numerically until the field intensities increase to about
also elaborate a bit more on our assumptions and some a&0'® W m™2. We note that this is the intensity level at which
sociated subtleties that we touched on while deriving thoseascade breakdown of air occurs at JIF] and in reality
results. We begin by considering realistic numerical valuegven much lower intensities- 10> W m™2 would vaporize
for our parameters and variables and thereby provide corthe spores and therefore would be too strong; thus, our weak-
crete justification for the approximations we made. field assumption covers the physically realistic regimes. Thus
we are quite justified in setting 1B}£?=1.

Finally we address the issue of the interaction times, since
many of our results assume short interaction times. In the
For the purpose of numerical estimation we will use thecase of pulsed inputd;~* sets the limits on the pulse dura-

specific example of an anthrax spore for which the Ramantion to beAt; <1013 s, which is certainly within the bounds
active molecule is dipicolinic acidDPA) which constitutes of experimental capabilities using femtosecond pulses. In the
17% of the weight, the rest being mainly water. The numbeicase of propagation in free space, taking the dimension of an
density of DPA molecules in an anthrax sporeNs~4  anthrax spord.~10°m as the interaction length we find

A. Numerical estimates
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L/v~1015<TI"L In either case the constraints of short in- ) v\ B2 Zle (2 12002
teraction times are likely to be satisfied for physical regimes Eq*= Pee X1 Eq| ol Egl°At?, (55
of interest. 0%p

whereAt=Atg, L/v, ¥ depending on the experimental con-
figuration. Written this way we see that our expression for
the signal is consistent with what we would get if we inte-

The main observation we have from our calculations isgrated the classical equatigd) for the slowly varying am-
that when the duration of interaction between the signalPlitude with appropriate assumptions. A more practical rep-
generating field and the Raman-active medifteAt,, L/p  resentation would be in terms of the input intensities using
is short compared t6~2, the signal and the noise due to the EQ- (50):

B. Signal and noise

medium have essentially the same theoretical description in- v \2
dependent of the various experimental scenarios that we con- l,= (—;‘2) [x¥721 115l 5AL2
sidered: Céo
8(I'-T)
N2|R43R; 52N nonzAt? 2_ 2280 _ 1o/ Y i
Ny~ 2CPAL ~ 7R3 1';‘[2 1MaNsal =13 N, \T for cw and cavity). (56)
At this point we validate numerically the assumption of

weak signal relative to the input fields. Using the parameters
. gAY B|§|4ZDNN+ 2Drr in the previous subsection we find the third-order suscepti-
42 (T+T,) r bility to be x®~10734C*N=3m™=. Taking all the input
fields to have the same intensity=1,~1,~ 15 and the ratio
- ”i%' (53) of the signal intensity to the input field intensity is
Tt b

s 1o ZAL2, (57)
where we have usel|£?<1 to set\y;=N; andC=C; we li
also noted that the term involvirBy,is smaller by a factor £qr the short interaction times that we considext
of B|¢|* than the one involvingD7r and hence we only re- _ 1135 ang input field intensities df~ 102 W m2, this
tained the latter. _ works out to bel,=10712;. This shows that even for higher
The exception to the above expressions was the case @iyt field intensities and increased density of active mol-

continuous-wave input in a cavity for which we got a steady-gcyles, the signal field would still remain relatively weak.
state signal and noise given by

C. Comparison with shot noise

B N2|R4aR12%N1noNg 1 Starting with the expression we derived for the generated
Ny = 2 Y’ field, we can write the operator for the generated field in
(54) terms of the input fields:

8yl -Tp) N|RagRy2At
22—~ A T3 AL 40
ong =nj NIT, a,= falagag,. (58

The signal has the same form as the other cases Atith Then noting that

— v 1. But the fluctuations differ by a factor of/T". Since aja, = ny(ny+ 1)ng,
typically y<T', the noise noise will be less in this case, and
becausey™! is greater than the short-time limits in the other
cases, the signal is bigger. In addition to this, given the fact
that there are no major constraints on the duration of th@nd on assuming similar and large photon numbers in the
irradiations apart from their possible destruction of theinput field,n;~n,~n;=n,>1, we find that the variance cor-
sample, this scenario seems to be the best one from thesponding to the shot noise is

(59
ajajaa, = (N +ny) (N3 +3n, + 1)(nf+ny),

signal-to-noise perspective. However, that conclusion has to N RoJAL\A 9
be moderated by the fact that when all three input fields o2~ (M) % 3P ~ 34 (60)
. . - oo (shob '

happen simultaneously; there can be significant contributions r n;
from the honresonant terms in our interaction Hamiltonian in Therefore the ratio of the medium noise and the shot noise
Eq. (1), particularly if we cannot achieve two-photon Ramanis
resonance. This is where the sequential pulse scheme as in
FAST CARS has an advantage. on? 8T -Ty) n/V

We can recast our expressions for the signal and fluctua- M = A, NV (61)

SNof

tions in terms of macroscopic variables. First using 8.
and the definition of classical field amplitudg=& o we  Using the numerical values that we considered earlier we
write the signal in terms of the classical field amplitudes: find
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on? 5 N describe a much broader physical regime, and the solutions
e =10°-10", (62) in general will have to be found numerically.
sho
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other medium of interest. In the case of cw inputs in a cavity APPENDIX A: DIFFUSION COEFFICIENTS

we have an advantage that the medium noise is further re-

duced by a factor of/T. A quantum Langevin equations for an opera%t) has

the general structure

VIIl. CONCLUSION X(t) = Al(t) + Fy(t), (A1)

We developed a model based on Langevin equation¥ith a deterministic parA [not to be confused with the field
which allowed us to get a purely analytic description of theoperator defined in Eq5)] and a stochastic pafi The
signal and the quantum noise for coherent ant_l -Stokes Ratiffusion coefficients B, =(F,F,) associated with these
man spectroscopy. If we use sequential pul@assin FAST  equations are calculated using the generalized fluctuation-

CARS) or we are close to two-photon resonance, the nondjissipation theoreni6,12, often called the Einstein rela-
resonant terms would not be important and the quantunfons:

noise arising from the finite lifetimes and coherence times of L ) R
the atoms and molecules would be a dominant source of di(%9) = (FyFy) + (KA + (AF). (A2)
noise. When interaction time between the input fields and the e - .
medium is short, we found that the signal and medium noisi)he nonzv_erodlffu5|_0n coefflClenf[s, corresponding to EGS)
have the same behavior in free space or in a cavity and witfP" the microscopic atomic variables, are
pulsed inputs or with continuous_waves._ _ _ 2D+, = (2T = T)(6),
In particular we showed that if the driving fields do not
vary much and the signal field is weak in comparison, the

shot noise which represents the fundamental limits of noise 2Dyt = 200 + [(a),

is larger than the quantum noise due to the medium, and so (A3)
the latter is not a limiting factor. Using a cavity to achieve 2D, == 2D, =T(0),

steady state with continuous-wave inputs leads to enhanced

signal and lesser medium noise; this would be important 2D = 2Dy = — 2Dpe = ['(Gp).

close to two-photon resonance and the nonresonant terms do

not contribute to the background noise. From these, using the definitions in EG0), the nonvanish-

Our calculations should be particularly relevant for noveling diffusion coefficients for the macroscopic collective
experiments with newly developed femtosecond lasers andtomic operatorslvl and N= Nb N are immediately ob-
for fast spectroscopic characterizations of microscopic agentsined:
in the air which could be organic ones like anthrax spores or

inorganic suspensions or trace contaminants. 2D\n=4T(Np),
Although our calculations in this paper were specific to
CARS, the model we developed should be applicable to most N _ Q
coherent Raman schemes with minor changes. We did not 2Dt = (20~ Tp)(No),
resort to the commonly used adiabatic elimination when cal- . (A4)
culating the noise and we point out the significant errors that 2Dy = 2I'(M),
would arise from such an approximation. Thereby we set the
grounds for a more accurate understanding of quantum noise 2Dyt = 2I‘<NC> + Fb<Nb>-

in stimulated Raman spectroscopy. In the regime of short
interaction times we achieved a completely analytical de4n transforming toc numbers, by normal ordering, all the
scription. But the Langevin equations we set up in our modemoments for the noise must remain unaltered. Gaussian
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noise is determined by the first two moments; the first mo- APPENDIX C: PROPAGATING FIELDS
ment(i.e., the meapvanishes, and the second moments must

have the same time evolution for a pair of operafgr§ in In order to describe fields propagating through a sample
normal orderand theirc-number equivalents: of atoms in free space, we use the technique of Drummond

. and Carteff{10]. We illustrate this technique by considering
diXy) = d(xy). (A5)  the propagation of the signal fielg}, with wave numbek, in
the direction of propagatio¢the z axis); the part of the total

The fluctuation-dissipation theorem, E@A2), and its Hamiltonian involving this field is

classical counterpart thereby relate ttvumber diffusion
coefficients to the operator diffusion coefficients:

(FFy) = (Fufy) + GA) + (A = (xA) = (Ag). H=fraga, +hgldd! + Hal. (1

(A6) For simplicity we have assumed a real interaction strength

Normal ordering of (XA)+(A§) gives some additional 9=Rysa3=|Ryzay|. The interaction length. is divided into
terms, and i, § arenotin normal order, we need to replace 2M*1 equal segments of mean positiapsIL/(2m+1) for
di(%9) — d(§%) =di(%9) —dx, y]. This determines all the non- =M, ....m. The description of propagation requires mul-

vanishingc-number diffusion coefficients for the collective tiple m_"de_s? a natural bas's_ IS provided by the _nor_mal modes
atomic variables: for periodic boundary conditions on the quantization length

L:
2D = 2l (Np+ N) — 4(M * A+ A* M),
27N
1 kn=i, n=-m,...,m, (C2)
2D ppe = F_Erb (Nt +N), (A7) L
2D 1 = 2(MAY. with corresponding creation and annihilation operatafs

andc,. Thus we can write the Hamiltonian as a linear com-
bination of the sub-Hamiltonians for each discrete segment
summed over all the normal modes:

APPENDIX B: NOISE SPECTRUM

The Fourier transforms of the noise functions are defined = fhcic,+hg> [ce ket + Hal.  (C3)
by n inl
— 1 éwt — —iwt . . .
Flw)= on | F(t), Ft)=| dwe"F(w). The indexi accounts for the number of atoms in each seg-
ment, =,=N;/(2m+1). Introducing local operators for the
(B1) slowly varying field amplitude in each segment through a

For stationary processes the second moments or two-tinféiscrete Fourier sum of the modes,
correlations depend only on the time differen¢E;(t)F;(t

+7))=K(7). In the frequency domain this defines the spectral 1 m
densityP(w) of the noise: a) = —— > ¢k, (C4)
\"‘2m+ ln:—m
(Filo)Fj(0)) = 8w+ o")P;j(w). (B2)

The two-time correlation and the spectral densities are timegnd the Hamiltonian can be written as
frequency Fourier transforms of each other:

1 . . T At()a( at)a(l’
Pj(w)= - f dreK(7), K(7) :f dre P, (). H=2 rvalVa) + 2 iy a)"a))
n n
The fluctuations cpnsidered in this paper are characterized +ﬁgz [V2m+ 1&1(06-1'(')4. H.al, (C5)
either by 6 correlations or by exponentially decaying corre- I
lations as a function of time difference for which the spectral
densities are, respectively, constant and Lorentzian:

m .
1 ~ 2mnc 2arin(l —I’))
K(7)=2D;o(r) 1 Py =20y, = E_m (2m+ 1)L exP( ome1 ) (€O
(B3)
K(n=e10 P, = 2y 1 The equation of motion for the slowly varying field ampli-
Y+ w?2n tude is then
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éﬂ) =iy a) —igy2m+ 15700, (C7)

We convert toc numbers and take the limit ofi— < so that
we have the correspondence

IL
= HZ,
2m+1

7
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-2 2D B|&[*2D
55%(Aty) = P 3{ r, Bld NN]

2y I'? I

While this reproduces the long-term steady-state behavior
correctly, the short-time behavior is linear in time, contrary
to the quadratic dependence that we found earlier.

The problem is more serious when we consider the free

space problem. We can understand it by considering the

[l equation for the fluctuation in the field variable:
V2m+ Llay, — ay(zt),

(C8) (3 +vd) SA(Z ) = F4(21). (D2)
iy V2m+1— ci, On integrating in the frequency domain and using the bound-
9z ary condition8.A(0,t)=0 we find that
L
~ilim 2m+1)> o', _,— M(z), saLy =2 dzryzt-"w-2). (D3)
m—co i vJo 4 c

and thereby we arrive at the space-time-dependent equatigxs shown in Appendix C the second moments of the noise
of motion for the slowly varying amplitude of the propagat- are § correlated inspaceas well as intime,

ing field:
(FADFAZ V) =2D L8z-7) 8t -1"),

(£+Ei>a4(z,t)=gM(Z,t)- (C9

Pl so that the second moments of the fluctuations of the signal

at the output are
In the same way the space-time-dependent noise operators

2
are defined by (6A(L,t)SA(L,t)) = ZDAAL—Zé(t -t). (D4)
v

Fdzb) = lim (2m+ 1) X Fi (1) (C10 At equal times this diverges and, therefore, so does the vari-

m—oo i 2 . . . .
anceds, and this underscores why the adiabatic approxima-
and analogously theic-number counterparts. The space- tion is inappropriate for describing the fluctuations.

time-dependent-number diffusion correlations

APPENDIX E: FLUCTUATIONS FOR INTERACTION

(Fz ) Fy(z,1) = n'jLnoc(zm"' Y <-7:i>1(t)]:y,(t)>|z|—>z,zl’—>z IN A CAVITY

ij
= (A Fy (1) d(z~-2),

and in the last step we used the correspondence

We show the details of the derivation when the interaction

C11
(€13 takes place in a cavity. From Eq®7) and(29) we get

At At 1
582(At) — 92f dtf dtle—y(ZAt—ZHT) X —
0 0

. (2m+1) 21
lim

m—ow

5"/ = 5(2_2,). (C12)

y f el 1E 2D+ g’ (I + 02D 4]
. T2+ 0T+ 02 '
(E1)

. . . L . with 7=t—t’. On doing a partial fraction decomposition and
We pointed out earlier that adiabatic elimination of atom'ccarrying out the integrations

variables cannot be applied to the fluctuations; we will now

APPENDIX D: PROBLEMS IN USING ADIABATIC
ELIMINATION IN COMPUTING NOISE

briefly discuss the consequences of doing so. We set 1 o 207| AgE 2D [ 1 -2
+BJ|¢?=1 as justified earlier. We eliminate the atomic vari- 65°(AY) = 2| - (2 (y+T )T
ables and write the consequent equation for the field variable b AYT I
inclusive ofboththe mean and fluctuation: LG ol
: 5= 2y(y+D)T
A== AA-§-CA+ Ty, o2 _ (T +y)At 1 — 2t
o aal 2 MERTEET ) ' 2”“( 2y(y+ 1T
Fazp|Tut T, N (b1 e 2vAt _ e—(I‘+V)At>:| ,
(-2, =2

In the case of a cavity, using th&t—t’) correlation of the

noise, we find In the limit of short interaction time/At<<1, it is easy to see
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that on doing a Taylor expansion of the exponentials as a ) g’ 2Dsr 492 E%2D 1

function of yAt the zeroth- and first-order terms cancel out. dS“(At) = 5 (y+I)T + (I2-T2) (y+ Tl

For example, consider the coefficient db; in the last line ny b LAt

which expanded to second order gives 1 )} (Ed
—2PAF  APAE- (T +9)?A AL (€3 Wy+DT/ |

2/(y+Tply 2T P(y+Tply, T

Thereby in this limit of short pulses we arrive at the expres-In the case of sequential pulsed input we allow for decay of

sion for 6%(At) in Eq. (30). the coherence and excitation and we get the expression in
In the opposite limit of long-time interaction timegt Eqg. (3D). In the case of continuous-wave inputs, if we take
>1 we get take y<I',I',, we reproduce Eq40).
[1] M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. (Wiley, New York, 1973.
Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, Proc. [7] M. I. Kolobov, L. Davidovich, E. Giacobino, and C. Fabre,
Natl. Acad. Sci. U.S.A.99, 10994(2002. Phys. Rev. A47, 1431(1993.
[2] G. Beadie, J. Reintjes, M. Bashansky, T. Optarny, and M. O. [g] M. Fleischhauer and M. O. Scully, Phys. Rev. 49, 1973
Scully, J. Mod. Opt.50, 2361(2003. (1994).

[3] J. J. LasernaModern Techniques in Raman Spectroscopy [9] M. O. Scully and M. S. ZubairyQuantum Optic§Cambridge

(Wiley, Chichester 1996 . . .
[4] G. L. Eesley,Coherent Raman SpectroscoBergamon, New University Press, Cambridge, England, 1297
[10] P. D. Drummond and C. J. Carter, J. Opt. Soc. Am4,BL565

York, 1981J). (1987

[5] L. E. Reichl,A Modern Course in Statistical Physi¢dniver-
sity of Texas Press, Austin, 1980 [11] N. Kroll and K. M. Watson, Phys. Rev. A, 1883(1972.

[6] W. H. Louisell, Quantum Statistical Properties of Radiation [12] M. Lax, Phys. Rev.145 110(1966.

013802-12



