882 research outputs found

    Stripes Disorder and Correlation lengths in doped antiferromagnets

    Full text link
    For stripes in doped antiferromagnets, we find that the ratio of spin and charge correlation lenghts, ξs/ξc\xi_{s}/\xi_{c}, provide a sharp criterion for determining the dominant form of disorder in the system. If stripes disorder is controlled by topological defects then ξs/ξc1\xi_{s}/\xi_{c}\lesssim 1. In contast, if stripes correlations are disordered primarily by non-topological elastic deformations (i.e., a Bragg-Glass type of disorder) then 1<ξs/ξc41<\xi _{s}/\xi_{c}\lesssim 4 is expected. Therefore, the observation of ξs/ξc4\xi _{s}/\xi_{c}\approx 4 in (LaNd)2xSrxCuO4(LaNd)_{2-x}Sr_{x}CuO_{4} and ξs/ξc3\xi_{s}/\xi _{c}\approx 3 in La2/3Sr1/3NiO4La_{2/3}Sr_{1/3}NiO_{4} invariably implies that the stripes are in a Bragg glass type state, and topological defects are much less relevant than commonly assumed. Expected spectral properties are discussed. Thus, we establish the basis for any theoretical analysis of the experimentally obsereved glassy state in these material.Comment: 4 pages, 2 figure

    First principles study of local electronic and magnetic properties in pure and electron-doped Nd2_2CuO4_4

    Full text link
    The local electronic structure of Nd2CuO4 is determined from ab-initio cluster calculations in the framework of density functional theory. Spin-polarized calculations with different multiplicities enable a detailed study of the charge and spin density distributions, using clusters that comprise up to 13 copper atoms in the CuO2plane. Electron doping is simulated by two different approaches and the resulting changes in the local charge distribution are studied in detail and compared to the corresponding changes in hole doped La2CuO4. The electric field gradient (EFG) at the copper nucleus is investigated in detail and good agreement is found with experimental values. In particular the drastic reduction of the main component of the EFG in the electron-doped material with respect to LaCuO4 is explained by a reduction of the occupancy of the 3d3z^2-r^2 atomic orbital. Furthermore, the chemical shieldings at the copper nucleus are determined and are compared to results obtained from NMR measurements. The magnetic hyperfine coupling constants are determined from the spin density distribution

    Nonbonding oxygen holes and spinless scenario of magnetic response in doped cuprates

    Full text link
    Both theoretical considerations and experimental data point to a more complicated nature of the valence hole states in doped cuprates than it is predicted by Zhang-Rice model. Actually, we deal with a competition of conventional hybrid Cu 3d-O 2p b1gdx2y2b_{1g}\propto d_{x^2 -y^2} state and purely oxygen nonbonding state with eux,ypx,ye_{u}x,y \propto p_{x,y} symmetry. The latter reveals a non-quenched Ising-like orbital moment that gives rise to a novel spinless purely oxygen scenario of the magnetic response in doped cuprates with the oxygen localized orbital magnetic moments of the order of tenths of Bohr magneton. We consider the mechanism of 63,65{}^{63,65}Cu-O 2p transferred orbital hyperfine interactions due to the mixing of the oxygen O 2p orbitals with Cu 3p semicore orbitals. Quantitative estimates point to a large magnitude of the respective contributions both to local field and electric field gradient, and their correlated character.Comment: 7 pages, 1 figur

    Experimental investigation of a 16-dimensional modulation format for long-haul multi-core fiber transmission

    Get PDF
    We experimentally investigate a 16-dimensional modulation format applicable to multi-core fiber transmission, and demonstrate over 14,000 km transmission for a BER of 1E-3, a 55 % improvement in reach compared to DP-BPSK for the same spectral efficiency

    Charge and Orbital Ordering in Pr_{0.5} Ca_{0.5} MnO_3 Studied by ^{17}O NMR

    Full text link
    The charge and orbital ordering in Pr_{0.5} Ca_{0.5} MnO_3 is studied for the first time by ^{17}O NMR. This local probe is sensitive to spin, charge and orbital correlations. Two transitions exist in this system: the charge and orbital ordering at T_{CO} = 225 K and the antiferromagnetic (AF) transition at T_N = 170 K. Both are clearly seen in the NMR spectra measured in a magnetic field of 7T. Above T_{CO} there exists only one NMR line with a large isotropic shift, whose temperature dependence is in accordance with the presence of ferromagnetic (FM) correlations. This line splits into two parts below T_{CO}, which are attributed to different types of oxygen in the charge/orbital ordered state. The interplay of FM and AF spin correlations of Mn ions in the charge ordered state of Pr_{0.5} Ca_{0.5} MnO_3 is considered in terms of the hole hopping motion that is slowed down with decreasing temperature. The developing fine structure of the spectra evidences, that there still exist charge-disordered regions at T_{CO} > T > T_N and that the static (t > 10^{-6}s) orbital order is established only on approaching T_N. The CE-type magnetic correlations develop gradually below T_{CO}, so that at first the AF correlations between checkerboard ab-layers appear, and only at lower temperature - CE correlations within the ab-planes

    Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60

    Full text link
    We present an NMR study of Na2C60 and K4C60, two compounds that are related by electron-hole symmetry in the C60 triply degenerate conduction band. In both systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements detect a gap in the electronic structure, most likely related to singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or C60^{4-}. However, the extended temperature range of the measurements presented here (10 K to 700 K) allows to reveal deviations with respect to this general trend, both at high and low temperatures. Above room temperature, 1/T1 deviates from the activated law that one would expect from the presence of the gap and saturates. In the same temperature range, a lowering of symmetry is detected in Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60, modifications of the 13C spectra lineshapes also indicate a structural modification. We discuss this high temperature deviation in terms of a coupling between JTD and local symmetry. At low temperatures, 1/T1_1T tends to a constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual metallic character, which emphasizes the proximity of metallic and insulting behaviors in alkali fullerides.Comment: 12 pages, 13 figure

    Borrelia Lyme Group

    Get PDF
    Borreliaceae is a family of the phylum Spirochaetales and includes two genera, Borrelia and Cristispira genus. Borrelia genus is divided into three groups, namely Lyme group (LG), Echidna‐Reptile group (REPG) and Relapsing Fever group (RFG). All Borrelia species have an obligate parasitic lifestyle, as they depend on their hosts for most of their nutritional needs. Borreliæ are transmitted among vertebrate hosts by arthropod vectors (ticks and lice). Transtadial transmission within their carriers occurs for the Borreliæ RF Group, while this does not (or rarely occurs) for the Borreliæ Lyme Group. Phylogenetic data demonstrated that these two groups are genetically similar but distinct, forming independent clades sharing a common ancestor. In nature, the vectors of LB belong to the genus Ixodes spp. frequently found in the Northern Hemisphere, while the vectors of RF are usually the soft-ticks (Ornithodoros spp.). Borreliae share a unique genomic structure consisting of a single highly conserved linear chromosome and several linear and circular extrachromosomal plasmids which can vary widely between strains. In addition to Lyme and RF borreliosis, an intermediate group, called Echidna-Reptile borreliosis, has recently been identified. Lyme disease (LD) is caused by the spirochæte Borrelia burgdorferi sensu lato (s.l.) and transmitted to humans by the bite of a hard tick of the genus Ixodes, and LD reservoir are usually small rodents. LD is present in America, Eurasia, Africa, while its presence in Australia is not yet well documented. Not all Borreliæ Lyme Groups cause this disease in humans. Of the 23 Borreliæ burgdorferi s.l. currently known only 9 have been identified in human infection, namely Borrelia burgdorferi sensu stricto, B. afzelii, B. bavarensis, B. bissettii, B. garinii, B. lusitaniae, B. spielmani, B. valaisiana, and B. mayonii. LD is an organotropic infection, but there is also a spirochætemic form, caused by Borrelia mayonii, which gives fever similarly to the Borreliosis RF Group. A third variant of LD is Baggio-Yoshinari Syndrome (BYS), which is transmitted by another hard tick, Amblyomma cajennense. This Borrelia has not been isolated in culture, therefore its membership in the Lyme Group is not yet proven. All three of these Sub-Groups can manifest early with erythema migrans. Clinical features of LD are wide and variable, with clinical manifestations linked to distinct tissue tropisms of specific Borrelia burgdorferi s.l. genospecies. The early infection is localized and, in the absence of treatment, the spirochete can spread. The organs most frequently involved are skin, joints, muscles, nervous system, heart and eyes. B. burgdorferi s.s. is more often associated with Lyme arthritis, Borrelia garinii with neuroborreliosis and B. afzelii with acrodermatitis chronica atrophicans
    corecore