600 research outputs found
Sidereal anisotropies in the median rigidity range 60-600GV in 1978-1983
Observed sidereal variations are corrected for the influence of spurious variation by a method using the antisidereal diurnal variations produced from the same 2nd order anisotropy (Nagashima, et al., 1983). It is demonstrated that the corrected variations are a resultant product of two constituents of galactic origin: one is north-south (N-S) symmetric and the other is N-S asymmetric
New Matsushiro underground cosmic ray station (220 M.W.E. in depth)
A new underground cosmic ray station has been opened at Matsushiro, Japan, and a multidirectional (17 directional channels) muon telescope has been installed at an effective vertical depth of 220 m.w.e. The counting rates are; 8.7 x 10,000/hr for the wide vertical component and 2.0 x 10,000/hr for the vertical component. Continuous observation has been performed since March 22,1984. Some details of the telescope and preliminary analyzed results of the data are presented
On the vacuum of the minimal nonsupersymmetric SO(10) unification
We study a class of nonsupersymmetric SO(10) grand unified scenarios where
the first stage of the symmetry breaking is driven by the vacuum expectation
values of the 45-dimensional adjoint representation. Three decade old results
claim that such a Higgs setting may lead exclusively to the flipped SU(5) x
U(1) intermediate stage. We show that this conclusion is actually an artifact
of the tree level potential. The study of the accidental global symmetries
emerging in various limits of the scalar potential offers a simple
understanding of the tree level result and a rationale for the drastic impact
of quantum corrections. We scrutinize in detail the simplest and paradigmatic
case of the 45_{H} + 16_{H} Higgs sector triggering the breaking of SO(10) to
the standard electroweak model. We show that the minimization of the one-loop
effective potential allows for intermediate SU(4)_C x SU(2)_L x U(1)_R and
SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L} symmetric stages as well. These are
the options favoured by gauge unification. Our results, that apply whenever the
SO(10) breaking is triggered by , open the path for hunting the simplest
realistic scenario of nonsupersymmetric SO(10) grand unification.Comment: 22 pages, 1 figure. Refs added. To appear in Phys. Rev.
SOLAR CYCLE DEPENDENCE OF THE DIURNAL ANISOTROPY OF 0.6 TeV COSMIC-RAY INTENSITY OBSERVED WITH THE MATSUSHIRO UNDERGROUND MUON DETECTOR
We analyze the temporal variation of the diurnal anisotropy of sub-TeV cosmic-ray intensity observed with the Matsushiro (Japan) underground muon detector over two full solar activity cycles in 1985-2008. We find an anisotropy component in the solar diurnal anisotropy superimposed on the Compton-Getting anisotropy due to Earth's orbital motion around the Sun. The phase of this additional anisotropy is almost constant at similar to 15:00 local solar time corresponding to the direction perpendicular to the average interplanetary magnetic field at Earth's orbit, while the amplitude varies between a maximum (0.043% +/- 0.002%) and minimum (similar to 0.008% +/- 0.002%) in a clear correlation with the solar activity. We find a significant time lag between the temporal variations of the amplitude and the sunspot number (SSN) and obtain the best correlation coefficient of +0.74 with the SSN delayed for 26 months. We suggest that this anisotropy might be interpreted in terms of the energy change due to the solar-wind-induced electric field expected for galactic cosmic rays (GCRs) crossing the wavy neutral sheet. The average amplitude of the sidereal diurnal variation over the entire period is 0.034% +/- 0.003%, which is roughly one-third of the amplitude reported from air shower and deep-underground muon experiments monitoring multi-TeVGCR intensity suggesting a significant attenuation of the anisotropy due to the solar modulation. We find, on the other hand, only a weak positive correlation between the sidereal diurnal anisotropy and the solar activity cycle in which the amplitude in the "active" solar activity epoch is about twice the amplitude in the "quiet" solar activity epoch. This implies that only one-fourth of the total attenuation varies in correlation with the solar activity cycle and/or the solar magnetic cycle. We finally examine the temporal variation of the "single-band valley depth" (SBVD) quoted by the Milagro experiment and, in contrast with recent Milagro's report, we find no steady increase in the Matsushiro observations in a seven-year period between 2000 and 2007. We suggest, therefore, that the steady increase of the SBVD reported by the Milagro experiment is not caused by the decreasing solar modulation in the declining phase of the 23rd solar activity cycle.ArticleThe Astrophysical Journal. 712(2):1100-1106 (2010)journal articl
A Pilot Study of Human Interferon beta Gene Therapy for Patients with Advanced Melanoma by in vivo Transduction Using Cationic Liposomes
This is a pre-copy-editing, auyhor-produced PDF of an article forpublication in JAPANESE JOURNAL OF CLINICAL ONCOLOGY following peer review. The definitive publisher-authenticated version JAPANESE JOURNAL OF CLINICAL ONCOLOGY. 38(12):849-856 (2008) is available online at 10.1093/jjco/hyn114JAPANESE JOURNAL OF CLINICAL ONCOLOGY. 38(12):849-856 (2008)journal articl
Spectroscopic factors for bound s-wave states derived from neutron scattering lengths
A simple and model-independent method is described to derive neutron
single-particle spectroscopic factors of bound s-wave states in nuclei from neutron scattering lengths. Spectroscopic factors
for the nuclei ^{13}C, ^{14}C, ^{16}N, ^{17}O, ^{19}O, ^{23}Ne, ^{37}Ar, and
^{41}Ar are compared to results derived from transfer experiments using the
well-known DWBA analysis and to shell model calculations. The scattering length
of ^{14}C is calculated from the ^{15}C_{g.s.} spectroscopic factor.Comment: 9 pages (uses revtex), no figures, accepted for publication in PRC,
uuencoded tex-files and postscript-files available at
ftp://is1.kph.tuwien.ac.at/pub/ohu/Thermal.u
Observation by an Air-Shower Array in Tibet of the Multi-TeV Cosmic-Ray Anisotropy due to Terrestrial Orbital Motion Around the Sun
We report on the solar diurnal variation of the galactic cosmic-ray intensity
observed by the Tibet III air shower array during the period from 1999 to 2003.
In the higher-energy event samples (12 TeV and 6.2 TeV), the variations are
fairly consistent with the Compton-Getting anisotropy due to the terrestrial
orbital motion around the sun, while the variation in the lower-energy event
sample (4.0 TeV) is inconsistent with this anisotropy. This suggests an
additional anisotropy superposed at the multi-TeV energies, e.g. the solar
modulation effect. This is the highest-precision measurement of the
Compton-Getting anisotropy ever made.Comment: 4 pages, 2 figures, includes .bbl fil
Natural boundaries for the Smoluchowski equation and affiliated diffusion processes
The Schr\"{o}dinger problem of deducing the microscopic dynamics from the
input-output statistics data is known to admit a solution in terms of Markov
diffusions. The uniqueness of solution is found linked to the natural
boundaries respected by the underlying random motion. By choosing a reference
Smoluchowski diffusion process, we automatically fix the Feynman-Kac potential
and the field of local accelerations it induces. We generate the family of
affiliated diffusions with the same local dynamics, but different inaccessible
boundaries on finite, semi-infinite and infinite domains. For each diffusion
process a unique Feynman-Kac kernel is obtained by the constrained (Dirichlet
boundary data) Wiener path integration.As a by-product of the discussion, we
give an overview of the problem of inaccessible boundaries for the diffusion
and bring together (sometimes viewed from unexpected angles) results which are
little known, and dispersed in publications from scarcely communicating areas
of mathematics and physics.Comment: Latex file, Phys. Rev. E 49, 3815-3824, (1994
- …