1,112 research outputs found

    Chiral molecule adsorption on helical polymers

    Full text link
    We present a lattice model for helicity induction on an optically inactive polymer due to the adsorption of exogenous chiral amine molecules. The system is mapped onto a one-dimensional Ising model characterized by an on-site polymer helicity variable and an amine occupancy one. The equilibrium properties are analyzed at the limit of strong coupling between helicity induction and amine adsorption and that of non-interacting adsorbant molecules. We discuss our results in view of recent experimental results

    Novel phase diagram for antiferromagnetism and superconductivity in pressure-induced heavy-fermion superconductor Ce2_2RhIn8_8 probed by In-NQR

    Full text link
    We present a novel phase diagram for the antiferromagnetism and superconductivity in Ce2_2RhIn8_8 probed by In-NQR studies under pressure (PP). The quasi-2D character of antiferromagnetic spin fluctuations in the paramagnetic state at PP = 0 evolves into a 3D character because of the suppression of antiferromagnetic order for P>PQCP∌P > P_{\rm QCP}\sim 1.36 GPa (QCP: antiferromagnetic quantum critical point). Nuclear-spin-lattice-relaxation rate 1/T11/T_1 measurements revealed that the superconducting order occurs in the PP range 1.36 -- 1.84 GPa, with maximum Tc∌T_c\sim 0.9 K around PQCP∌P_{\rm QCP}\sim 1.36 GPa.Comment: 5 pages, 5 figures, submitted to PR

    High-Tc Nodeless s_\pm-wave Superconductivity in (Y,La)FeAsO_{1-y} with Tc=50 K: 75As-NMR Study

    Full text link
    We report 75As-NMR study on the Fe-pnictide high-Tc superconductor Y0.95La0.05FeAsO_{1-y} (Y0.95La0.051111) with Tc=50 K that includes no magnetic rare-earth elements. The measurement of the nuclear-spin lattice-relaxation rate 75(1/T1) has revealed that the nodeless bulk superconductivity takes place at Tc=50 K while antiferromagnetic spin fluctuations (AFSFs) develop moderately in the normal state. These features are consistently described by the multiple fully-gapped s_\pm-wave model based on the Fermi-surface (FS) nesting. Incorporating the theory based on band calculations, we propose that the reason that Tc=50 K in Y0.95La0.051111 is larger than Tc=28 K in La1111 is that the FS multiplicity is maximized, and hence the FS nesting condition is better than that in La1111.Comment: 4 pages, 3 figures, accepted for publication in Phys Rev. Let

    Possibility of valence-fluctuation mediated superconductivity in Cd-doped CeIrIn5_5 probed by In-NQR

    Full text link
    We report on a pressure-induced evolution of exotic superconductivity and spin correlations in CeIr(In1−x_{1-x}Cdx_{x})5_5 by means of In-Nuclear-Quadrupole-Resonance (NQR) studies. Measurements of an NQR spectrum and nuclear-spin-lattice-relaxation rate 1/T11/T_1 have revealed that antiferromagnetism induced by the Cd-doping emerges locally around Cd dopants, but superconductivity is suddenly induced at TcT_c = 0.7 and 0.9 K at 2.34 and 2.75 GPa, respectively. The unique superconducting characteristics with a large fraction of the residual density of state at the Fermi level that increases with TcT_c differ from those for anisotropic superconductivity mediated by antiferromagnetic correlations. By incorporating the pressure dependence of the NQR frequency pointing to the valence change of Ce, we suggest that unconventional superconductivity in the CeIr(In1−x_{1-x}Cdx_{x})5_5 system may be mediated by valence fluctuations.Comment: Accepted for publication in Physical Review Letter

    Synthesis of H<sub>x</sub>Li<sub>1-x</sub>LaTiO<sub>4</sub> from quantitative solid-state reactions at room temperature

    Get PDF
    The layered perovskite HLaTiO4 reacts stoichiometrically with LiOH·H2O at room temperature to give targeted compositions in the series HxLi1-xLaTiO4. Remarkably, the Li+ and H+ ions are quantitatively exchanged in the solid state and this allows stoichiometric control of ion exchange for the first time in this important series of compounds

    Furthering the understanding of silicate-substitution in α-tricalcium phosphate : an X-ray diffraction, X-ray fluorescence and solid-state nuclear magnetic resonance study

    Get PDF
    High-purity (SupT) and reagent-grade (ST), stoichiometric and silicate-containing α-tricalcium phosphate (α-TCP: ST0/SupT0 and Si-TCP x = 0.10: ST10/SupT10) were prepared by solid-state reaction based on the substitution mechanism Ca3(PO4)(2-x)(SiO4)x. Samples were determined to be phase pure by X-ray diffraction (XRD), and Rietveld analysis performed on the XRD data confirmed inclusion of Si in the α-TCP structure as determined by increases in unit cell parameters; particularly marked increases in the b-axis and ÎČ-angle were observed. X-ray fluorescence (XRF) confirmed the presence of expected levels of Si in Si-TCP compositions as well as significant levels of impurities (Mg, Al and Fe) present in all ST samples; SupT samples showed both expected levels of Si and a high degree of purity. Phosphorus (31P) magic-angle-spinning solid-state nuclear magnetic resonance (MAS NMR) measurements revealed that the high-purity reagents used in the synthesis of SupT0 can resolve the 12 expected peaks in the 31P spectrum of α-TCP compared to the low-purity ST0 that showed significant spectral line broadening; line broadening was also observed with the inclusion of Si which is indicative of induced structural disorder. Silicon (29Si) MAS NMR was also performed on both Si-TCP samples which revealed Q0 species of Si with additional Si Q1/Q2 species that may indicate a potential charge-balancing mechanism involving the inclusion of disilicate groups; additional Q4 Si species were also observed, but only for ST10. Heating and cooling rates were briefly investigated by 31P MAS NMR which showed no significant line broadening other than that associated with the emergence of ÎČ-TCP which was only realised with the reagent-grade sample ST0. This study provides an insight into the structural effects of Si-substitution in α-TCP and could provide a basis for understanding how substitution affects the physicochemical properties of the material
    • 

    corecore