19,071 research outputs found

    Two-dimensional imaging of gauge fields in optical lattices

    Full text link
    We propose a scheme to generate an arbitrary Abelian vector potential for atoms trapped in a two-dimensional optical lattice. By making the optical lattice potential dependent on the atomic state, we transform the problem into that of a two-dimensional imaging. It is shown that an arbitrarily fine pattern of the gauge field in the lattice can be realized without need of diffraction-limited imaging.Comment: 4 pages, 3 figure

    Quasi-adiabatic Continuation of Quantum States: The Stability of Topological Ground State Degeneracy and Emergent Gauge Invariance

    Full text link
    We define for quantum many-body systems a quasi-adiabatic continuation of quantum states. The continuation is valid when the Hamiltonian has a gap, or else has a sufficiently small low-energy density of states, and thus is away from a quantum phase transition. This continuation takes local operators into local operators, while approximately preserving the ground state expectation values. We apply this continuation to the problem of gauge theories coupled to matter, and propose a new distinction, perimeter law versus "zero law" to identify confinement. We also apply the continuation to local bosonic models with emergent gauge theories. We show that local gauge invariance is topological and cannot be broken by any local perturbations in the bosonic models in either continuous or discrete gauge groups. We show that the ground state degeneracy in emergent discrete gauge theories is a robust property of the bosonic model, and we argue that the robustness of local gauge invariance in the continuous case protects the gapless gauge boson.Comment: 15 pages, 6 figure

    Irrational charge from topological order

    Full text link
    Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three dimensional RVB liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.Comment: 4 pages, 1 figure with two panel

    Braiding statistics approach to symmetry-protected topological phases

    Full text link
    We construct a 2D quantum spin model that realizes an Ising paramagnet with gapless edge modes protected by Ising symmetry. This model provides an example of a "symmetry-protected topological phase." We describe a simple physical construction that distinguishes this system from a conventional paramagnet: we couple the system to a Z_2 gauge field and then show that the \pi-flux excitations have different braiding statistics from that of a usual paramagnet. In addition, we show that these braiding statistics directly imply the existence of protected edge modes. Finally, we analyze a particular microscopic model for the edge and derive a field theoretic description of the low energy excitations. We believe that the braiding statistics approach outlined in this paper can be generalized to a large class of symmetry-protected topological phases.Comment: 17 pages, 12 figures, reorganized section V, added a referenc

    Binding Transition in Quantum Hall Edge States

    Get PDF
    We study a class of Abelian quantum Hall (QH) states which are topologically unstable (T-unstable). We find that the T-unstable QH states can have a phase transition on the edge which causes a binding between electrons and reduces the number of gapless edge branches. After the binding transition, the single-electron tunneling into the edge gains a finite energy gap, and only certain multi-electron co-tunneling (such as three-electron co-tunneling for ν=9/5\nu=9/5 edges) can be gapless. Similar phenomenon also appear for edge state on the boundary between certain QH states. For example edge on the boundary between ν=2\nu=2 and ν=1/5\nu=1/5 states only allow three-electron co-tunneling at low energies after the binding transition.Comment: 4 pages, RevTeX, 1 figur

    Broken symmetry, hyper-fermions, and universal conductance in transport through a fractional quantum Hall edge

    Full text link
    We have found solution to a model of tunneling between a multi-channel Fermi liquid reservoir and an edge of the principal fractional quantum Hall liquid (FQHL) in the strong coupling limit. The solution explains how the absence of the time-reversal symmetry at high energies due to chiral edge propagation makes the universal two-terminal conductance of the FQHL fractionally quantized and different from that of a 1D Tomonaga-Luttinger liquid wire, where a similar model but preserving the time-reversal symmetry predicts unsuppressed free-electron conductance.Comment: 5 twocolumn pages in RevTex, no figures, more explanations added, a short version was published in JETP Letters, vol.74, 87 (2001

    A new class of (2+1)(2+1)-d topological superconductor with Z8\mathbb{Z}_8 topological classification

    Full text link
    The classification of topological states of matter depends on spatial dimension and symmetry class. For non-interacting topological insulators and superconductors the topological classification is obtained systematically and nontrivial topological insulators are classified by either integer or Z2Z_2. The classification of interacting topological states of matter is much more complicated and only special cases are understood. In this paper we study a new class of topological superconductors in (2+1)(2+1) dimensions which has time-reversal symmetry and a Z2\mathbb{Z}_2 spin conservation symmetry. We demonstrate that the superconductors in this class is classified by Z8\mathbb{Z}_8 when electron interaction is considered, while the classification is Z\mathbb{Z} without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur

    Hole Doping Dependence of the Coherence Length in La2xSrxCuO4La_{2-x}Sr_xCuO_4 Thin Films

    Full text link
    By measuring the field and temperature dependence of magnetization on systematically doped La2xSrxCuO4La_{2-x}Sr_xCuO_4 thin films, the critical current density jc(0)j_c(0) and the collective pinning energy Up(0)U_p(0) are determined in single vortex creep regime. Together with the published data of superfluid density, condensation energy and anisotropy, for the first time we derive the doping dependence of the coherence length or vortex core size in wide doping regime directly from the low temperature data. It is found that the coherence length drops in the underdoped region and increases in the overdoped side with the increase of hole concentration. The result in underdoped region clearly deviates from what expected by the pre-formed pairing model if one simply associates the pseudogap with the upper-critical field.Comment: 4 pages, 4 figure

    Fidelity and quantum phase transitions

    Full text link
    It is shown that the fidelity, a basic notion of quantum information science, may be used to characterize quantum phase transitions, regardless of what type of internal order is present in quantum many-body states. If the fidelity of two given states vanishes, then there are two cases: (1) they are in the same phase if the distinguishability results from irrelevant local information; or (2) they are in different phases if the distinguishability results from relevant long-distance information. The different effects of irrelevant and relevant information are quantified, which allows us to identify unstable and stable fixed points (in the sense of renormalization group theory). A physical implication of our results is the occurrence of the orthogonality catastrophe near the transition points.Comment: 5 pages, 2 figure
    corecore