11 research outputs found
Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope: Early Results on Mrk 1014, Mrk 463, and UGC 5101
We present spectra taken with the Infrared Spectrograph on Spitzer covering
the 5-38micron region of three Ultraluminous Infrared Galaxies (ULIRGs): Mrk
1014 (z=0.163), and Mrk 463 (z=0.051), and UGC 5101 (z=0.039). The continua of
UGC 5101 and Mrk 463 show strong silicate absorption suggesting significant
optical depths to the nuclei at 10microns. UGC 5101 also shows the clear
presence of water ice in absorption. PAH emission features are seen in both Mrk
1014 and UGC 5101, including the 16.4micron line in UGC 5101. The fine
structure lines are consistent with dominant AGN power sources in both Mrk 1014
and Mrk 463. In UGC 5101 we detect the [NeV] 14.3micron emission line providing
the first direct evidence for a buried AGN in the mid-infrared. The detection
of the 9.66micron and 17.03micron H emission lines in both UGC 5101 and
Mrk 463 suggest that the warm molecular gas accounts for 22% and 48% of the
total molecular gas masses in these galaxies.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 3 figure
On-orbit performance of the MIPS instrument
The Multiband Imaging Photometer for Spitzer (MIPS) provides long wavelength capability for the mission, in imaging bands at 24, 70, and 160 microns and measurements of spectral energy distributions between 52 and 100 microns at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The Si:As BIB 24 micron array has excellent photometric properties, and measurements with rms relative errors of 1% or better can be obtained. The two longer wavelength arrays use Ge:Ga detectors with poor photometric stability. However, the use of 1.) a scan mirror to modulate the signals rapidly on these arrays, 2.) a system of on-board stimulators used for a relative calibration approximately every two minutes, and 3.) specialized reduction software result in good photometry with these arrays also, with rms relative errors of less than 10%
Electronic Fingerprint of the Protonated Imidazole Dimer Probed by X ray Absorption Spectroscopy
Protons in low barrier superstrong hydrogen bonds are typically delocalized between two electronegative atoms. Conventional methods to characterize such superstrong hydrogen bonds are vibrational spectroscopy and diffraction techniques. We introduce soft X ray spectroscopy to uncover the electronic fingerprints for proton sharing in the protonated imidazole dimer, a prototypical building block enabling effective proton transport in biology and high temperature fuel cells. Using nitrogen core excitations as a sensitive probe for the protonation status, we identify the X ray signature of a shared proton in the solvated imidazole dimer in a combined experimental and theoretical approach. The degree of proton sharing is examined as a function of structural variations that modify the shape of the low barrier potential in the superstrong hydrogen bond. We conclude by showing how the sensitivity to the quantum distribution of proton motion in the double well potential is reflected in the spectral signature of the shared proto
Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle
Photoacids show a strong increase in acidity in the first electronic excited state, enabling real time studies of proton transfer in acid base reactions, proton transport in energy storage devices and biomolecular sensor protein systems. Several explanations have been proposed for what determines photoacidity, ranging from variations in solvation free energy to changes in electronic structure occurring along the four stages of the Förster cycle. Here we use picosecond nitrogen K edge spectroscopy to monitor the electronic structure changes of the proton donating group in a protonated aromatic amine photoacid in solution upon photoexcitation and subsequent proton transfer dynamics. Probing core to valence transitions locally at the amine functional group and with orbital specificity, we clearly reveal pronounced electronic structure, dipole moment and energetic changes on the conjugate photobase side. This result paves the way for a detailed electronic structural characterization of the photoacidity phenomeno
On orbit performance of the MIPS instrument
The Multiband Imaging Photometer for Spitzer (MIPS) provides long wavelength capability for the mission, in imaging bands at 24, 70, and 160 microns and measurements of spectral energy distributions between 52 and 100 microns at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The Si:As BIB 24 micron array has excellent photometric properties, and measurements with rms relative errors of 1% or better can be obtained. The two longer wavelength arrays use Ge:Ga detectors with poor photometric stability. However, the use of 1.) a scan mirror to modulate the signals rapidly on these arrays, 2.) a system of on-board stimulators used for a relative calibration approximately every two minutes, and 3.) specialized reduction software result in good photometry with these arrays also, with rms relative errors of less than 10%