713 research outputs found

    Thermal plasticity is independent of environmental history in an intertidal seaweed

    Get PDF
    Organisms inhabiting the intertidal zone have been used to study natural ecophysiological responses and adaptations to thermal stress because these organisms are routinely exposed to high‐temperature conditions for hours at a time. While intertidal organisms may be inherently better at withstanding temperature stress due to regular exposure and acclimation, they could be more vulnerable to temperature stress, already living near the edge of their thermal limits. Strong gradients in thermal stress across the intertidal zone present an opportunity to test whether thermal tolerance is a plastic or canalized trait in intertidal organisms. Here, we studied the intertidal pool‐dwelling calcified alga, Ellisolandia elongata, under near‐future temperature regimes, and the dependence of its thermal acclimatization response on environmental history. Two timescales of environmental history were tested during this experiment. The intertidal pool of origin was representative of long‐term environmental history over the alga's life (including settlement and development), while the pool it was transplanted into accounted for recent environmental history (acclimation over many months). Unexpectedly, neither long‐term nor short‐term environmental history, nor ambient conditions, affected photosynthetic rates in E. elongata. Individuals were plastic in their photosynthetic response to laboratory temperature treatments (mean 13.2°C, 15.7°C, and 17.7°C). Further, replicate ramets from the same individual were not always consistent in their photosynthetic performance from one experimental time point to another or between treatments and exhibited no clear trend in variability over experimental time. High variability in climate change responses between individuals may indicate the potential for resilience to future conditions and, thus, may play a compensatory role at the population or species level over time

    Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems.

    Get PDF
    Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates

    Missing links in the study of solute and particle exchange between the sea floor and water column

    Get PDF
    Exchanges of solutes and solids between the sea floor and water column are a vital component of ecosystem functioning in marine habitats around the globe. This review explores particle and solute exchange processes, the different mechanisms through which they interact at the ecosystem level, as well as their interdependencies. Solute and particle exchange processes are highly dependent on the characteristics of the environment within which they takes place. Exchange is driven directly by a number of factors, such as currents, granulometry, nutrient, and matter inputs, as well as living organisms. In turn, the occurrence of exchanges can influence adjacent environments and organisms. Major gaps in the present knowledge include the temporal and spatial variation in many of the processes driving benthic/pelagic exchange processes and the variability in the relative importance of individual processes caused by this variation. Furthermore, the accurate assessment of some anthropogenic impacts is deemed questionable due to a lack of baseline data and long-term effects of anthropogenic actions are often unknown. It is suggested that future research should be transdisciplinary and at ecosystem level wherever possible and that baseline surveys should be implemented and long-term observatories established to fill the current knowledge gaps

    Evaluation of estuarine biotic indices to assess macro-benthic structure and functioning following nutrient remediation actions: A case study on the Eden estuary Scotland

    Get PDF
    © 2018 Despite a wealth of methods currently proposed by the European Water Framework Directive (WFD) to assess macro-benthic integrity, determining good ecological status (GES) and assessing ecosystem recovery following anthropogenic degradation is still one of the biggest challenges in marine ecology research. In this study, our aim was to test a number of commonly used structural (e.g. Shannon–Wiener, Average Taxonomic Diversity ([Formula presented]), M-AMBI) and functional indicators (e.g. BTA, BPc) currently used in benthic research and monitoring programmes on the Eden estuary (Scotland). Historically the estuary has a legacy of high nutrient conditions and was designated as a Nitrate Vulnerable Zone (NVZ) in 2003, whence major management measures were implemented in order to ameliorate the risk of eutrophication symptoms. We therefore collected data on intertidal macro-benthic communities over a sixteen year interval, covering a pre-management (1999) and post-management (2015) period to assess the effectiveness of the intended restoration efforts. In the post-management period, the results suggested an improvement in the structure and functioning of the estuary as a whole, but macro-benthic assemblages responded to restoration variably along the estuarine gradient. The greatest improvements were noticed in the upper and central sites of the estuary with functional traits analysis suggesting an increased ability of these sites to provide ecosystem services associated with the benthic environment such as carbon and organic matter cycling. Generally, almost all of the structural and functional indicators detected the prevailing environmental conditions (with the exception of (Pielou's index and Average Taxonomic Diversity ([Formula presented])), highlighting the appropriateness of such methods to be used in monitoring the recovery of transitional systems. This research also provides a robust baseline to monitor further management actions in the Eden estuary and provides evidence that notable reductions in nitrate concentrations resulting from NVZ designations may result in significant improvements to benthic structure and functioning

    NeuroMask: Explaining Predictions of Deep Neural Networks through Mask Learning

    Get PDF
    Deep Neural Networks (DNNs) deliver state-of-the-art performance in many image recognition and understanding applications. However, despite their outstanding performance, these models are black-boxes and it is hard to understand how they make their decisions. Over the past few years, researchers have studied the problem of providing explanations of why DNNs predicted their results. However, existing techniques are either obtrusive, requiring changes in model training, or suffer from low output quality. In this paper, we present a novel method, NeuroMask, for generating an interpretable explanation of classification model results. When applied to image classification models, NeuroMask identifies the image parts that are most important to classifier results by applying a mask that hides/reveals different parts of the image, before feeding it back into the model. The mask values are tuned by minimizing a properly designed cost function that preserves the classification result and encourages producing an interpretable mask. Experiments using state-of-art Convolutional Neural Networks for image recognition on different datasets (CIFAR-10 and ImageNet) show that NeuroMask successfully localizes the parts of the input image which are most relevant to the DNN decision. By showing a visual quality comparison between NeuroMask explanations and those of other methods, we find NeuroMask to be both accurate and interpretable

    Comparing the network structure and resilience of two benthic estuarine systems following the implementation of nutrient mitigation actions

    Get PDF
    The structure and resilience of benthic communities in coastal and estuarine ecosystems can be strongly affected by human mediated disturbances, such as nutrient enrichment, often leading to changes in a food webs function. In this study, we used the Ecopath model (EwE) to examine two case studies where deliberate management actions aimed at reducing nutrient pollution and restoring ecosystems resulted in ecological recovery. Five mass-balanced models were developed to represent pre and post-management changes in the benthic food web properties of the Tamar (1990, 1992, 2005) and Eden (1999, 2015) estuarine systems (UK). The network functions of interest were measures related to the cycling of carbon, nutrients and the productivity of the systems. Specific attention was given to the trophic structure and cycling pathways within the two ecosystems. The network attribute of ascendency was also examined as a proxy for resilience and used to define safe system-level operating boundaries. The results of the resilience metrics ascendancy (A) and its derivatives capacity (C) and overhead (O) indicate that both systems were more resilient and had higher resistance to potential stressors under low nutrient conditions. The less perturbed networks also cycled material more efficiently, according to Finns cycling index (CI), and longer cycling path lengths were indications of less stressed systems. Relative Ascendency (A/C) also proved useful for comparing estuarine systems of different sizes, suggesting the Tamar and Eden systems network structures have remained within their pre-defined “safe operating zones”. Overall, this analysis presents justification that efforts to reduce nutrient inputs into the Tamar and Eden estuaries have had a positive effect on the trophic networks of each system. Moreover, the consensuses of the network indicators in both systems suggest ecological network analysis (ENA) to be a suitable methodology to compare the recovery patterns of ecosystems of different sizes and complexity

    Phosphorus dynamics in the Barents Sea

    Get PDF
    The Barents Sea is considered a warming hotspot in the Arctic; elevated sea surface temperatures have been accompanied with increased inflow of Atlantic water onto the shelf sea. Such hydrodynamic changes and a concomitant reduction of sea ice coverage enables a prolonged phytoplankton growing season, which will inevitably affect nutrient stoichiometry and the controls on primary production. During the summer of 2018, we investigated the role of phosphorus in mediating primary production in the Barents Sea. Dissolved inorganic phosphorus (DIP), its most bioavailable form, had an average net turnover time of 9.4�4.8 d. The most southern Atlantic influenced station accounted for both the highest rates of primary production (655 mg C m2 d−1) and shortest net DIP turnover (2.8�0.5 d). The fraction of assimilated DIP released as dissolved organic phosphorus (DOP) at this station was < 4% compared to an average of 21% at all other stations. We observed significant differences between phytoplankton communities in Arctic and Atlantic waters within the Barents Sea. Slower DIP turnover and greater release of DOP was associated with Phaeocystis pouchetii dominated communities in Arctic waters. Faster turnover rates and greater phosphorus retention occurred among the Atlantic phytoplankton communities dominated by Emiliania huxleyi. Thesefindings provide baseline measurements of P utilization in the Barents Sea, and suggest increased Atlantic intrusion of this region could be accompanied by more rapid DIP turnover, possibly leading to future P limitation (rather than N limitation) on primary productio

    Elevated CO2induces a bloom of microphytobenthos within a shell gravel mesocosm

    Get PDF
    The geological storage of carbon dioxide (CO2) is expected to be an important component of future global carbon emission mitigation, but there is a need to understand the impacts of a CO2 leak on the marine environment and to develop monitoring protocols for leakage detection. In the present study, sediment cores were exposed to CO2-acidified seawater at one of five pH levels (8.0, 7.5, 7.0, 6.5 and 6.0) for 10 weeks. A bloom of Spirulina sp. and diatoms appeared on sediment surface exposed to pH 7.0 and 7.5 seawater. Quantitative PCR measurements of the abundance of 16S rRNA also indicated an increase within the pH 7.0 and 7.5 treatments after 10 weeks incubation. More detailed analysis of the microbial communities from the pH 7.0, 7.5 and 8.0 treatments confirmed an increase in the relative abundance of Spirulina sp. and Navicula sp. sequences, with changes in the relative abundance of major archaeal and bacterial groups also detected within the pH 7.0 treatment. A decreased flux of silicate from the sediment at this pH was also detected. Monitoring blooms of microphytobenthos may prove useful as an indicator of CO2 leakage within coastal area
    corecore