771 research outputs found

    Primordial Non-Gaussianity in the Cosmic Microwave Background

    Get PDF
    In the last few decades, advances in observational cosmology have given us a standard model of cosmology. We know the content of the universe to within a few percent. With more ambitious experiments on the way, we hope to move beyond the knowledge of what the universe is made of, to why the universe is the way it is. In this review paper we focus on primordial non-Gaussianity as a probe of the physics of the dynamics of the universe at the very earliest moments. We discuss 1) theoretical predictions from inflationary models and their observational consequences in the cosmic microwave background (CMB) anisotropies; 2) CMB--based estimators for constraining primordial non-Gaussianity with an emphasis on bispectrum templates; 3) current constraints on non-Gaussianity and what we can hope to achieve in the near future; and 4) non-primordial sources of non-Gaussianities in the CMB such as bispectrum due to second order effects, three way cross-correlation between primary-lensing-secondary CMB, and possible instrumental effects.Comment: 27 pages, 8 figures; Invited Review for the Journal "Advances in Astronomy"; references adde

    First measurement of gravitational lensing by cosmic voids in SDSS

    Full text link
    We report the first measurement of the diminutive lensing signal arising from matter underdensities associated with cosmic voids. While undetectable individually, by stacking the weak gravitational shear estimates around 901 voids detected in SDSS DR7 by Sutter et al. (2012a), we find substantial evidence for a depression of the lensing signal compared to the cosmic mean. This depression is most pronounced at the void radius, in agreement with analytical models of void matter profiles. Even with the largest void sample and imaging survey available today, we cannot put useful constraints on the radial dark-matter void profile. We invite independent investigations of our findings by releasing data and analysis code to the public at https://github.com/pmelchior/void-lensingComment: 6 pages, 5 figures, as accepted by MNRA

    Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background

    Get PDF
    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; non-homogeneous, correlated instrumental noise; and foreground emission is a problem of central importance for the extraction of cosmological information from the cosmic microwave background. We develop a Monte Carlo approach for the maximum likelihood estimation of the power spectrum. The method is based on an identity for the Bayesian posterior as a marginalization over unknowns. Maximization of the posterior involves the computation of expectation values as a sample average from maps of the cosmic microwave background and foregrounds given some current estimate of the power spectrum or cosmological model, and some assumed statistical characterization of the foregrounds. Maps of the CMB are sampled by a linear transform of a Gaussian white noise process, implemented numerically with conjugate gradient descent. For time series data with N_{t} samples, and N pixels on the sphere, the method has a computational expense $KO[N^{2} +- N_{t} +AFw-log N_{t}], where K is a prefactor determined by the convergence rate of conjugate gradient descent. Preconditioners for conjugate gradient descent are given for scans close to great circle paths, and the method allows partial sky coverage for these cases by numerically marginalizing over the unobserved, or removed, region.Comment: submitted to Ap

    3DGraCT: A Grammar-Based Compressed Representation of 3D Trajectories

    Get PDF
    This version of the manuscript has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-030-00479-8_9[Abstract]: Much research has been published about trajectory management on the ground or at the sea, but compression or indexing of flight trajectories have usually been less explored. However, air traffic management is a challenge because airspace is becoming more and more congested, and large flight data collections must be preserved and exploited for varied purposes. This paper proposes 3DGraCT, a new method for representing these flight trajectories. It extends the GraCT compact data structure to cope with a third dimension (altitude), while retaining its space/time complexities. 3DGraCT improves space requirements of traditional spatio-temporal data structures by two orders of magnitude, being competitive for the considered types of queries, even leading the comparison for a particular one.This work was funded in part by EU H2020 MSCA RISE BIRDS: 690941; MINECO-AEI/FEDER-UE: TIN2016-78011-C4-1-R; MINECO-CDTI/FEDER-UE CIEN IDI-20141259; MINECO-CDTI/FEDER-UE CIEN IDI-20150616; MINECO-CDTI/FEDER-UE INNTERCONECTA ITC-20161074; Xunta de Galicia/FEDER-UE ED431C 2017/58 and ED431G/01.Xunta de Galicia; ED431C 2017/58Xunta de Galicia; ED431G/0

    Sparse sampling, galaxy bias, and voids

    Full text link
    To study the impact of sparsity and galaxy bias on void statistics, we use a single large-volume, high-resolution N-body simulation to compare voids in multiple levels of subsampled dark matter, halo populations, and mock galaxies from a Halo Occupation Distribution model tuned to different galaxy survey densities. We focus our comparison on three key observational statistics: number functions, ellipticity distributions, and radial density profiles. We use the hierarchical tree structure of voids to interpret the impacts of sampling density and galaxy bias, and theoretical and empirical functions to describe the statistics in all our sample populations. We are able to make simple adjustments to theoretical expectations to offer prescriptions for translating from analytics to the void properties measured in realistic observations. We find that sampling density has a much larger effect on void sizes than galaxy bias. At lower tracer density, small voids disappear and the remaining voids are larger, more spherical, and have slightly steeper profiles. When a proper lower mass threshold is chosen, voids in halo distributions largely mimic those found in galaxy populations, except for ellipticities, where galaxy bias leads to higher values. We use the void density profile of Hamaus et al. (2014) to show that voids follow a self-similar and universal trend, allowing simple translations between voids studied in dark matter and voids identified in galaxy surveys. We have added the mock void catalogs used in this work to the Public Cosmic Void Catalog at http://www.cosmicvoids.net.Comment: 11 pages, 7 figures, MNRAS accepted. Minor changes from previous version. Public catalog available at http://www.cosmicvoids.ne

    Detection of primordial non-Gaussianity (fNL) in the WMAP 3-year data at above 99.5% confidence

    Full text link
    We present evidence for the detection of primordial non-Gaussianity of the local type (fNL), using the temperature information of the Cosmic Microwave Background (CMB) from the WMAP 3-year data. We employ the bispectrum estimator of non-Gaussianity described in (Yadav et al. 2007) which allows us to analyze the entirety of the WMAP data without an arbitrary cut-off in angular scale. Using the combined information from WMAP's two main science channels up to lmax=750 and the conservative Kp0 foreground mask we find 27 < fNL < 147 at 95% C.L., with a central value of fNL=87. This corresponds to a rejection of fNL=0 at more than 99.5% significance. We find that this detection is robust to variations in lmax, frequency and masks, and that no known foreground, instrument systematic, or secondary anisotropy explains our signal while passing our suite of tests. We explore the impact of several analysis choices on the stated significance and find 2.5 sigma for the most conservative view. We conclude that the WMAP 3-year data disfavors canonical single field slow-roll inflation.Comment: 4 pages, 2 figures, 1 tables, submitted to PRL, references added. New version has several additional tests and systematic error estimates. Results largely unchange

    Primordial Non-Gaussianity: Baryon Bias and Gravitational Collapse of Cosmic String Wakes

    Get PDF
    I compute the 3-D non-linear evolution of gas and dark matter fluids in the neighbourhood of cosmic string wakes which are formed at high redshift (z≃2240z\simeq 2240) for a ``realistic'' scenario of wake formation. These wakes are the ones which stand out most prominently as cosmological sheets and are expected to play a dominant r\^ole in the cosmic string model of structure formation. Employing a high-resolution 3-D hydrodynamics code to evolve these wakes until the present day yields results for the baryon bias generated in the inner wake region. I find that today, wakes would be 1.5h−11.5 h^{-1} Mpc thick and contain a 70% excess in the density of baryons over the dark matter density in their centre. However, high density peaks in the wake region do not inherit a baryon enhancement. I propose a mechanism for this erasure of the baryon excess in spherically collapsed objects based on the geometry change around the collapsing region. Further, I present heuristic arguments for the consequences of this work for large scale structure in the cosmic string model and conclude that the peculiarities of wake formation are unlikely to have significant import on the discrepancy between power spectrum predictions and observations in this model. If one invokes the nucleosynthesis bound on Ωb\Omega_b this could be seen as strengthening the case against Ωm=1\Omega_m=1 or for low Hubble constants.Comment: 21 pages, 7 figures, 2 tables, prepared with the AASTeX package. Minor modifications, results unchanged. ApJ in press, scheduled for Vol. 50
    • 

    corecore