41 research outputs found

    The chain rule implies Tsirelson's bound: an approach from generalized mutual information

    Full text link
    In order to analyze an information theoretical derivation of Tsirelson's bound based on information causality, we introduce a generalized mutual information (GMI), defined as the optimal coding rate of a channel with classical inputs and general probabilistic outputs. In the case where the outputs are quantum, the GMI coincides with the quantum mutual information. In general, the GMI does not necessarily satisfy the chain rule. We prove that Tsirelson's bound can be derived by imposing the chain rule on the GMI. We formulate a principle, which we call the no-supersignalling condition, which states that the assistance of nonlocal correlations does not increase the capability of classical communication. We prove that this condition is equivalent to the no-signalling condition. As a result, we show that Tsirelson's bound is implied by the nonpositivity of the quantitative difference between information causality and no-supersignalling.Comment: 23 pages, 8 figures, Added Section 2 and Appendix B, result unchanged, Added reference

    Spectral reflectance properties of iridescent pierid butterfly wings

    Get PDF
    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in iridescence. The amplitude of the reflectance is proportional to the number of lamellae in the ridge stacks. The angle-dependent peak wavelength of the observed iridescence is in agreement with classical multilayer theory. The iridescence is virtually always in the ultraviolet wavelength range, but some species have a blue-peaking iridescence. The spectral properties of the pigmentary and structural colourations are presumably tuned to the spectral sensitivities of the butterflies’ photoreceptors

    Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors

    Get PDF
    The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover

    Mechanisms, functions and ecology of colour vision in the honeybee.

    Get PDF
    notes: PMCID: PMC4035557types: Journal Article© The Author(s) 2014.This is an open access article that is freely available in ORE or from Springerlink.com. Please cite the published version available at: http://link.springer.com/article/10.1007%2Fs00359-014-0915-1Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.Biotechnology and Biological Sciences Research Council (BBSRC

    Imprinting in the endosperm: a possible role in preventing wide hybridization.

    Get PDF
    Reproductive isolation is considered to play a key part in evolution, and plants and animals have developed a range of strategies that minimize gene flow between species. In plants, these strategies involve either pre-zygotic barriers, such as differences in floral structure and pollen-stigma recognition, or post-zygotic barriers, which are less well understood and affect aspects of seed development ranging from fertilization to maturation. In most angiosperms, a double fertilization event gives rise to a zygote and the endosperm: a triploid tissue with an unequal parental genomic contribution, which, like the placenta of mammals, provides reserves to the developing embryo. Interestingly, many aspects of endosperm development, again like the placenta, are regulated by a range of epigenetic mechanisms that are globally termed imprinting. Imprinted genes are characterized by their uniparental expression, the other parental allele being silenced. Normal development of the endosperm thus requires a highly specific balance of gene expression, from either the maternal or paternal genomes. Any alteration of this balance resulting from changes in allelic copy number, sequence or epigenetic imprints can cause endosperm failure and eventual seed abortion. In its widest sense, the endosperm thus serves as an accurate 'sensor' of compatibility between parents. A first step in understanding this important, yet complex system must clearly be the isolation and characterization of as wide a range as possible of imprinted genes
    corecore