10,258 research outputs found
The NASA/OAST telerobot testbed architecture
Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented
A comparison of reflector antenna designs for wide-angle scanning
Conventional reflector antennas are typically designed for up to + or - 20 beamwidths scan. An attempt was made to stretch this scan range to some + or - 300 beamwidths. Six single and dual reflector antennas were compared. It is found that a symmetrical parabolic reflector with f/D = 2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at Theta sub 0 = 8 deg, or a 114 beamwidths scan). The scan is achieved by tilting the parabolic reflector by an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 elements instead of one element is used for the feed. The cluster excitation is adjusted for each new beam scan direction to compensate for the imperfect field distribution over the reflector aperture. The antenna can be folded into a Cassegrain configuration except that, due to spillover and blockage considerations, the amount of folding achievable is small
A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant
Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver
A comparison of reflector antenna designs for wide-angle scanning
Conventional reflector antennas are typically designed for up to + or - 20 beamwidths scan. An attempt was made to stretch this scan range to some + or - 300 beamwidths. Six single and dual reflector antennas were compared. It is found that a symmetrical parabolic reflector with f/D = 2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at Theta sub 0 = 8 deg, or a 114 beamwidths scan). The scan is achieved by tilting the parabolic reflector by an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 elements instead of one element is used for the feed. The cluster excitation is adjusted for each new beam scan direction to compensate for the imperfect field distribution over the reflector aperture. The antenna can be folded into a Cassegrain configuration except that, due to spillover and blockage considerations, the amount of folding achievable is small
Atmospheric Moisture Content Effects on Ionic Liquid Wettability of Alumina
The contact angles or wettability of 7 Ionic Liquids, on an alumina substrate, have been measured under two different storage conditions. The first using a small amount of moisture content, the second with no moisture content. The contact angle of Ionic Liquid droplets on an alumina substrate were measured using an Attension Theta instrument with automated software. The results show that a small amount of moisture improves the wettability of the Ionic Liquid – alumina system and therefore subsequent uses of these liquids with alumina should take this into consideration
Computational Model for Microbubble Enhanced Performance of Airlift Bioreactor (ALB)
This paper presents a computational model for microbubble enhanced performance of an airlift bioreactor (ALB). Five different bubble diameters were defined in the model under the same conditions (440 µm to 1 mm bubble diameter). The computational model parameters and the size of the ALB were defined by referring to experimental work done previously. The main objective of the model is to study the effect of bubble size on the rising velocity and the liquid flow velocity in the airlift reactor (ALB). The results obtained from the computational model shows that microbubbles have a better performance over larger bubbles because microbubbles have better gas hold up due to slow rise velocity and are able to increase the flow velocity due to their high surface area to volume ratio
X-ray Observations of the Compact Source in CTA 1
The point source RX J0007.0+7302, at the center of supernova remnant CTA 1,
was studied using the X-Ray Multi-mirror Mission. The X-ray spectrum of the
source is consistent with a neutron star interpretation, and is well described
by a power law with the addition of a soft thermal component that may
correspond to emission from hot polar cap regions or to cooling emission from a
light element atmosphere over the entire star. There is evidence of extended
emission on small spatial scales which may correspond to structure in the
underlying synchrotron nebula. No pulsations are observed. Extrapolation of the
nonthermal spectrum of RX J0007.0+7302 to gamma-ray energies yields a flux
consistent with that of EGRET source 3EG J0010+7309, supporting the proposition
that there is a gamma-ray emitting pulsar at the center of CTA 1. Observations
of the outer regions of CTA 1 with the Advanced Satellite for Cosmology and
Astrophysics confirm earlier detections of thermal emission from the remnant
and show that the synchrotron nebula extends to the outermost reaches of the
SNR.Comment: 5 pages, including 4 postscript figs.LaTex. Accepted for publication
by Ap
- …