1,008 research outputs found

    Kinematic rate control of simulated robot hand at or near wrist singularity

    Get PDF
    A robot hand should obey movement commands from an operator on a computer program as closely as possible. However, when two of the three rotational axes of the robot wrist are colinear, the wrist loses a degree of freedom, and the usual resolved rate equations (used to move the hand in response to an operator's inputs) are indeterminant. Furthermore, rate limiting occurs in close vicinity to this singularity. An analysis shows that rate limiting occurs not only in the vicinity of this singularity but also substantially away from it, even when the operator commands rotational rates of the robot hand that are only a small percentage of the operational joint rate limits. Therefore, joint angle rates are scaled when they exceed operational limits in a real time simulation of a robot arm. Simulation results show that a small dead band avoids the wrist singularity in the resolved rate equations but can introduce a high frequency oscillation close to the singularity. However, when a coordinated wrist movement is used in conjunction with the resolved rate equations, the high frequency oscillation disappears

    Redshifts from Spitzer Spectra for Optically Faint, Radio Selected Infrared Sources

    Full text link
    Spectra have been obtained with the Infrared Spectrograph on the Spitzer Space Telescope for 18 optically faint sources (R > 23.9,mag) having f(nu) (24um) > 1.0,mJy and having radio detections at 20 cm to a limit of 115 microJy. Sources are within the Spitzer First Look Survey. Redshifts are determined for 14 sources from strong silicate absorption features (12 sources) or strong PAH emission features (2 sources), with median redshift of 2.1. Results confirm that optically faint sources of ~1 mJy at 24um are typically at redshifts z ~ 2, verifying the high efficiency in selecting high redshift sources based on extreme infrared to optical flux ratio, and indicate that 24um sources which also have radio counterparts are not systematically different than samples chosen only by their infrared to optical flux ratios. Using the parameter q = log[f(nu)(24um)/f(nu)(20 cm)] 17 of the 18 sources observed have values of 0<q<1, in the range expected for starburst-powered sources, but only a few of these show strong PAH emission as expected from starbursts, with the remainder showing absorbed or power-law spectra consistent with an AGN luminosity source. This confirms previous indications that optically faint Spitzer sources with f(nu)(24um) > 1.0mJy are predominately AGN and represent the upper end of the luminosity function of dusty sources at z ~ 2. Based on the characteristics of the sources observed so far, we predict that the nature of sources selected at 24um will change for f(nu)(24um) < 0.5 mJy to sources dominated primarily by starbursts.Comment: Accepted ApJ 20 February 2006, v638 2 issue, 10pages including 3 figure

    Beyond XSPEC: Towards Highly Configurable Analysis

    Full text link
    We present a quantitative comparison between software features of the defacto standard X-ray spectral analysis tool, XSPEC, and ISIS, the Interactive Spectral Interpretation System. Our emphasis is on customized analysis, with ISIS offered as a strong example of configurable software. While noting that XSPEC has been of immense value to astronomers, and that its scientific core is moderately extensible--most commonly via the inclusion of user contributed "local models"--we identify a series of limitations with its use beyond conventional spectral modeling. We argue that from the viewpoint of the astronomical user, the XSPEC internal structure presents a Black Box Problem, with many of its important features hidden from the top-level interface, thus discouraging user customization. Drawing from examples in custom modeling, numerical analysis, parallel computation, visualization, data management, and automated code generation, we show how a numerically scriptable, modular, and extensible analysis platform such as ISIS facilitates many forms of advanced astrophysical inquiry.Comment: Accepted by PASP, for July 2008 (15 pages

    Twenty Years of Timing SS433

    Get PDF
    We present observations of the optical ``moving lines'' in spectra of the Galactic relativistic jet source SS433 spread over a twenty year baseline from 1979 to 1999. The red/blue-shifts of the lines reveal the apparent precession of the jet axis in SS433, and we present a new determination of the precession parameters based on these data. We investigate the amplitude and nature of time- and phase-dependent deviations from the kinematic model for the jet precession, including an upper limit on any precessional period derivative of P˙<5×10−5\dot P < 5 \times 10^{-5}. We also dicuss the implications of these results for the origins of the relativistic jets in SS433.Comment: 21 pages, including 9 figures. To appear in the Astrophysical Journa

    Translational control of a graphically simulated robot arm by kinematic rate equations that overcome elbow joint singularity

    Get PDF
    An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm

    Mid-Infrared Spectra of Classical AGN Observed with the Spitzer Space Telescope

    Full text link
    Full low resolution (65<R<130) and high resolution (R~600) spectra between 5 microns and 37 microns obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope are presented for eight classical active galactic nuclei (AGN) which have been extensively studied previously. Spectra of these AGN are presented as comparison standards for the many objects, including sources at high redshift, which are being observed spectroscopically in the mid-infrared for the first time using the IRS. The AGN are NGC4151, Markarian 3, I Zwicky 1, NGC 1275, Centaurus A, NGC 7469, Markarian 231, and NGC 3079. These sources are used to demonstrate the range of infrared spectra encountered in objects which have widely different classification criteria at other wavelengths but which unquestionably contain AGN. Overall spectral characteristics - including continuum shape, nebular emission lines, silicate absorption and emission features, and PAH emission features - are considered to understand how spectral classifications based on mid-infrared spectra relate to those previously derived from optical spectra. The AGN are also compared to the same parameters for starburst galaxies such as NGC 7714 and the compact, low metallicity starburst SBS 0335-052 previously observed with the IRS. Results confirm the much lower strengths of PAH emission features in AGN, but there are no spectral parameters in this sample which unambiguously distinguish AGN and starbursts based only on the slopes of the continuous spectra.Comment: Accepted by Ap

    Moderate Resolution Spectroscopy For The Space Infrared Telescope Facility (SIRTF)

    Get PDF
    A conceptual design for an infrared spectrometer capable of both low resolution (λ/Δ-λ = 50; 2.5-200 microns) and moderate resolution (1000; 4-200 microns) and moderate resolution (1000; 4-200 microns) has been developed. This facility instrument will permit the spectroscopic study in the infrared of objects ranging from within the solar system to distant galaxies. The spectroscopic capability provided by this instrument for SIRTF will give astronomers orders of magnitude greater sensitivity for the study of faint objects than had been previously available. The low resolution mode will enable detailed studies of the continuum radiation. The moderate resolution mode of the instrument will permit studies of a wide range of problems, from the infrared spectral signatures of small outer solar system bodies such as Pluto and the satellites of the giant planets, to investigations of more luminous active galaxies and QS0s at substantially greater distances. A simple design concept has been developed for the spectrometer which supports the science investigation with practical cryogenic engineering. Operational flexibility is preserved with a minimum number of mechanisms. The five modules share a common aperture, and all gratings share a single scan mechanism. High reliability is achieved through use of flight-proven hardware concepts and redundancy. The design controls the heat load into the SIRTF cryogen, with all heat sources other than the detectors operating at 7K and isolated from the 4K cold station. Two-dimensional area detector arrays are used in the 2.5-120ÎŒm bands to simultaneously monitor adjacent regions in extended objects and to measure the background near point sources

    Deep Mid-Infrared Silicate Absorption as a Diagnostic of Obscuring Geometry Toward Galactic Nuclei

    Get PDF
    The silicate cross section peak near 10um produces emission and absorption features in the spectra of dusty galactic nuclei observed with the Spitzer Space Telescope. Especially in ultraluminous infrared galaxies, the observed absorption feature can be extremely deep, as IRAS 08572+3915 illustrates. A foreground screen of obscuration cannot reproduce this observed feature, even at large optical depth. Instead, the deep absorption requires a nuclear source to be deeply embedded in a smooth distribution of material that is both geometrically and optically thick. In contrast, a clumpy medium can produce only shallow absorption or emission, which are characteristic of optically-identified active galactic nuclei. In general, the geometry of the dusty region and the total optical depth, rather than the grain composition or heating spectrum, determine the silicate feature's observable properties. The apparent optical depth calculated from the ratio of line to continuum emission generally fails to accurately measure the true optical depth. The obscuring geometry, not the nature of the embedded source, also determines the far-IR spectral shape.Comment: To appear in ApJ

    Neon and Sulfur Abundances of Planetary Nebulae in the Magellanic Clouds

    Get PDF
    The chemical abundances of neon and sulfur for 25 planetary nebulae (PNe) in the Magellanic Clouds are presented. These abundances have been derived using mainly infrared data from the Spitzer Space Telescope. The implications for the chemical evolution of these elements are discussed. A comparison with similarly obtained abundances of Galactic PNe and HII regions and Magellanic Clouds HII regions is also given. The average neon abundances are 6.0x10(-5) and 2.7x10(-5) for the PNe in the Large and Small Magellanic Clouds respectively. These are ~1/3 and 1/6 of the average abundances of Galactic planetary nebulae to which we compare. The average sulfur abundances for the LMC and SMC are respectively 2.7x10(-6) and 1.0x10(-6). The Ne/S ratio (23.5) is on average higher than the ratio found in Galactic PNe (16) but the range of values in both data sets is similar for most of the objects. The neon abundances found in PNe and HII regions agree with each other. It is possible that a few (3-4) of the PNe in the sample have experienced some neon enrichment, but for two of these objects the high Ne/S ratio can be explained by their very low sulfur abundances. The neon and sulfur abundances derived in this paper are also compared to previously published abundances using optical data and photo-ionization models.Comment: 13 pages, 4 tables, 5 figures. Accepted for publication in Ap
    • 

    corecore