211 research outputs found
Switching Exciton Pulses Through Conical Intersections
Exciton pulses transport excitation and entanglement adiabatically through
Rydberg aggregates, assemblies of highly excited light atoms, which are set
into directed motion by resonant dipole-dipole interaction. Here, we
demonstrate the coherent splitting of such pulses as well as the spatial
segregation of electronic excitation and atomic motion. Both mechanisms exploit
local nonadiabatic effects at a conical intersection, turning them from a
decoherence source into an asset. The intersection provides a sensitive knob
controlling the propagation direction and coherence properties of exciton
pulses. The fundamental ideas discussed here have general implications for
excitons on a dynamic network.Comment: Letter with 4 pages and 4 figures. Supplemental material with 4 pages
and 4 figure
On-chip quantum tomography of mechanical nano-scale oscillators with guided Rydberg atoms
Nano-mechanical oscillators as well as Rydberg-atomic waveguides hosted on
micro-fabricated chip surfaces hold promise to become pillars of future quantum
technologies. In a hybrid platform with both, we show that beams of Rydberg
atoms in waveguides can quantum-coherently interrogate and manipulate
nanomechanical elements, allowing full quantum state tomography. Central to the
tomography are quantum non-demolition measurements using the Rydberg atoms as
probes. Quantum coherent displacement of the oscillator is also made possible,
by driving the atoms with external fields while they interact with the
oscillator. We numerically demonstrate the feasibility of this fully integrated
on-chip control and read-out suite for quantum nano-mechanics, taking into
account noise and error sources.Comment: 11 pages, 5 figures, 1 tabl
Correlated Exciton Transport in Rydberg-Dressed-Atom Spin Chains
We investigate the transport of excitations through a chain of atoms with
non-local dissipation introduced through coupling to additional short-lived
states. The system is described by an effective spin-1/2 model where the ratio
of the exchange interaction strength to the reservoir coupling strength
determines the type of transport, including coherent exciton motion, incoherent
hopping and a regime in which an emergent length scale leads to a preferred
hopping distance far beyond nearest neighbors. For multiple impurities, the
dissipation gives rise to strong nearest-neighbor correlations and
entanglement. These results highlight the importance of non-trivial
dissipation, correlations and many-body effects in recent experiments on the
dipole-mediated transport of Rydberg excitations.Comment: 5 page
Conical intersections in an ultracold gas
We find that energy surfaces of more than two atoms or molecules interacting
via dipole-dipole po- tentials generically possess conical intersections (CIs).
Typically only few atoms participate strongly in such an intersection. For the
fundamental case, a circular trimer, we show how the CI affects adiabatic
excitation transport via electronic decoherence or geometric phase
interference. These phe- nomena may be experimentally accessible if the trimer
is realized by light alkali atoms in a ring trap, whose dipole-dipole
interactions are induced by off-resonant dressing with Rydberg states. Such a
setup promises a direct probe of the full many-body density dynamics near a
conical intersection.Comment: 4 pages, 4 figures, replacement to add archive referenc
Non-Markovian Dynamics in Ultracold Rydberg Aggregates
We propose a setup of an open quantum system in which the environment can be
tuned such that either Markovian or non-Markovian system dynamics can be
achieved. The implementation uses ultracold Rydberg atoms, relying on their
strong long-range interactions. Our suggestion extends the features available
for quantum simulators of molecular systems employing Rydberg aggregates and
presents a new test bench for fundamental studies of the classification of
system-environment interactions and the resulting system dynamics in open
quantum systems.Comment: 13 pages, 4 figure
Dipole-dipole induced global motion of Rydberg-dressed atom clouds
We consider two clouds of ground state alkali atoms in two distinct hyperfine
ground states. Each level is far off-resonantly coupled to a Rydberg state,
which leads to dressed ground states with a weak admixture of the Rydberg state
properties. Due to this admixture, for a proper choice of the Rydberg states,
the atoms experience resonant dipole-dipole interactions that induce mechanical
forces acting on all atoms within both clouds. This behavior is in contrast to
the dynamics predicted for bare dipole-dipole interactions between Rydberg
superatoms, where only a single atom per cloud is subject to dipole-dipole
induced motion [Phys. Rev. A {\bf 88} 012716 (2013)].Comment: 15 pages, 2 figure
Transport on flexible Rydberg aggregates using circular states
Assemblies of interacting Rydberg atoms show promise for the quantum
simulation of transport phenomena, quantum chemistry and condensed matter
systems. Such schemes are typically limited by the finite lifetime of Rydberg
states. Circular Rydberg states have the longest lifetimes among Rydberg states
but lack the energetic isolation in the spectrum characteristic of low angular
momentum states. The latter is required to obtain simple transport models with
few electronic states per atom. Simple models can however even be realized with
circular states, by exploiting dipole-dipole selection rules or external
fields. We show here that this approach can be particularly fruitful for
scenarios where quantum transport is coupled to atomic motion, in adiabatic
excitation transport or quantum simulations of electron-phonon coupling in
light harvesting. Additionally, we explore practical limitations of flexible
Rydberg aggregates with circular states and to which extent interactions among
circular Rydberg atoms can be described using classical models.Comment: 9 Pages, 5 Figure
- …