166 research outputs found

    Block Spin Effective Action for Polyakov Loops in 4D SU(2) LGT

    Full text link
    Using a variant of the IMCRG method of Gupta and Cordery, we explicitly compute majority rule block spin effective actions for the signs of the Polyakov loops in 4D SU(2) finite temperature lattice gauge theories. To the best of our knowledge, this is the first attempt to compute numerically effective actions for the Polyakov loop degrees of freedom in 4D SU(2). The most important observations are: 1. The renormalization group flow at the deconfinement transition can be nicely matched with the flow of the 3D Ising model, thus confirming the Svetitsky-Yaffe conjecture. 2. The IMCRG simulations of the FT SU(2) model have strongly reduced critical slowing down.Comment: Contribution to the Lattice 97 proceedings, LaTeX, 3 pages, 3 figures, uses espcrc2.sty, epsfig.st

    The Width of the Colour Flux Tube

    Full text link
    We discuss and rederive in a general way the logarithmic growth of the mean squared width of the colour flux tube as a function of the interquark separation. Recent data on 3D Z2Z_2 gauge theory, combined with high precision data on the interface physics of the 3D Ising model fit nicely this behaviour over a range of more than two orders of magnitude.Comment: 3 pages, contribution to the Lattice '94 conference, uuencoded compressed ps-fil

    Nature of the Vacuum inside the Color Flux Tube

    Get PDF
    The interior of the color flux tube joining a quark pair can be probed by evaluating the correlator of pair of Polyakov loops in a vacuum modified by another Polyakov pair, in order to check the dual superconductivity conjecture which predicts a deconfined, hot core. We also point out that at the critical point of any 3D gauge theories with a continuous deconfining transition the Svetitsky-Yaffe conjecture provides us with an analytic expression of the Polyakov correlator as a function of the position of the probe inside the flux tube. Both these predictions are compared with numerical results in 3D Z2 gauge model finding complete agreement.Comment: 3 pages, Talk presented at LATTICE96(topology

    On the relation between the width of the flux tube and Tc−1T_c^{-1} in lattice gauge theories

    Full text link
    Within the framework of a quantum flux tube model for the interquark potential it is possible to predict that in (2+1) dimensions the space-like string tension must increase with the temperature in the deconfined phase and that the thickness of the flux tube must coincide with the inverse of the deconfinement temperature. Both these predictions are in good agreement with some recent numerical simulations of SU(2) and Z2Z_2 gauge models.Comment: 3 pages, uuencoded .ps file (Proceeding of Lattice '93 Conference

    Finite Size Effects in Fluid Interfaces

    Full text link
    It is shown that finite size effects in the free energy of a rough interface of the 3D Ising and three--state Potts models are well described by the capillary wave model at {\em two--loop} order. The agreement between theoretical predictions and Monte Carlo simulations strongly supports the idea of the universality of this description of order--order interfaces in 3D statistical systems above the roughening temperature.Comment: 3 pages, uuencoded .ps file, figures included. (Proceeding of Lattice '93

    Rough Interfaces Beyond the Gaussian Approximation

    Get PDF
    We compare predictions of the Capillary Wave Model with Monte Carlo results for the energy gap and the interface energy of the 3D Ising model in the scaling region. Our study reveals that the finite size effects of these quantities are well described by the Capillary Wave Model, expanded to two-loop order (one order beyond the Gaussian approximation).Comment: Contribution to LATTICE 94. 3 pages, PostScript fil
    • 

    corecore