48 research outputs found
Control of gradient-driven instabilities using shear Alfv\'en beat waves
A new technique for manipulation and control of gradient-driven instabilities
through nonlinear interaction with Alfv\'en waves in a laboratory plasma is
presented. A narrow field-aligned density depletion is created in the Large
Plasma Device (LAPD), resulting in coherent unstable fluctuations on the
periphery of the depletion. Two independent kinetic Alfv\'en waves are launched
along the depletion at separate frequencies, creating a nonlinear beat-wave
response at or near the frequency of the original instability. When the
beat-wave has sufficient amplitude, the original unstable mode is suppressed,
leaving only the beat-wave response at a different frequency, generally at
lower amplitude.Comment: Submitted for Publication in Physical Review Letters. Revision 2
reflects changes suggested by referees for PRL submission. One figure
removed, several major changes to another figure, and a number of major and
minor changes to the tex
Modification of turbulent transport with continuous variation of flow shear in the Large Plasma Device
Continuous control over azimuthal flow and shear in the edge of the Large
Plasma Device (LAPD) has been achieved using a biasable limiter which has
allowed a careful study of the effect of flow shear on pressure-gradient-driven
turbulence and transport in LAPD. LAPD rotates spontaneously in the ion
diamagnetic direction (IDD); positive limiter bias first reduces, then
minimizes (producing a near-zero shear state), and finally reverses the flow
into the electron diamagnetic direction (EDD). Degradation of particle
confinement is observed in the minimum shearing state and reduction in
turbulent particle flux is observed with increasing shearing in both flow
directions. Near-complete suppression of turbulent particle flux is observed
for shearing rates comparable to the turbulent autocorrelation rate measured in
the minimum shear state. Turbulent flux suppression is dominated by amplitude
reduction in low-frequency (kHz) density fluctuations. An increase in
fluctuations for the highest shearing states is observed with the emergence of
a coherent mode which does not lead to net particle transport. The variations
of density fluctuations are fit well with power-laws and compare favorably to
simple models of shear suppression of transport.Comment: 10 pages, 5 figures; Submitted to Phys. Rev. Let
Sheared-flow induced confinement transition in a linear magnetized plasma
A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (Ī“n/n~eĪ“Ļ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=ā£ā£ālnnā£ā£ā1~2cm) and shearing rate (Ī³~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by EĆB drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m=1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge
Turbulence and transport suppression scaling with flow shear on the Large Plasma Device
Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Instr. 62, 2875 (1991)] has been achieved using a biasable limiter. This flow control has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and particle transport in LAPD. The combination of externally controllable shear in a turbulent plasma along with the detailed spatial diagnostic capabilities on LAPD makes the experiment a useful testbed for validation of shear suppression models. Motivated by these models, power-law fits are made to the density and radial velocity fluctuation amplitudes, particle flux, density-potential crossphase, and radial correlation length. The data show a break in the trend of these quantities when the shearing rate ( Ī³s=āVĪø/ār ) is comparable to the turbulent decorrelation rate ( 1/Ļac ). No one model captures the trends in the all turbulent quantities for all values of the shearing rate, but some models successfully match the trend in either the weak ( Ī³sĻac\u3c1 ) or strong ( Ī³sĻac\u3e1 ) shear limits
Laboratory study of magnetic reconnection in lunar-relevant mini-magnetospheres
Mini-magnetospheres are small ion-scale structures that are well-suited to
studying kinetic-scale physics of collisionless space plasmas. Such ion-scale
magnetospheres can be found on local regions of the Moon, associated with the
lunar crustal magnetic field. In this paper, we report on the laboratory
experimental study of magnetic reconnection in laser-driven, lunar-like
ion-scale magnetospheres on the Large Plasma Device (LAPD) at the University of
California - Los Angeles. In the experiment, a high-repetition rate (1 Hz),
nanosecond laser is used to drive a fast moving, collisionless plasma that
expands into the field generated by a pulsed magnetic dipole embedded into a
background plasma and magnetic field. The high-repetition rate enables the
acquisition of time-resolved volumetric data of the magnetic and electric
fields to characterize magnetic reconnection and calculate the reconnection
rate. We notably observe the formation of Hall fields associated with
reconnection. Particle-in-cell simulations reproducing the experimental results
were performed to study the micro-physics of the interaction. By analyzing the
generalized Ohm's law terms, we find that the electron-only reconnection is
driven by kinetic effects, through the electron pressure anisotropy. These
results are compared to recent satellite measurements that found evidence of
magnetic reconnection near the lunar surface
Sheared-flow induced confinement transition in a linear magnetized plasma
A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (Ī“n/n~eĪ“Ļ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=ā£ā£ālnnā£ā£ā1~2cm) and shearing rate (Ī³~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by EĆB drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m=1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge
Measurements of classical transport of fast ions
To study the fast-ion transport in a well controlled background plasma, a 3-cm diameter rf ion gun launches a pulsed, ~300 eV ribbon shaped argon ion beam parallel to or at 15Ā°to the magnetic field in the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)] at UCLA. The parallel energy of the beam is measured by a two-grid energy analyzer at two axial locations (z=0.32 m and z=6.4 m) from the ion gun in LAPD. The calculated ion beam slowing-down time is consistent to within 10% with the prediction of classical Coulomb collision theory using the LAPD plasma parameters measured by a Langmuir probe. To measure cross-field transport, the beam is launched at 15Ā°to the magnetic field. The beam then is focused periodically by the magnetic field to avoid geometrical spreading. The radial beam profile measurements are performed at different axial locations where the ion beam is periodically focused. The measured cross-field transport is in agreement to within 15% with the analytical classical collision theory and the solution to the Fokker-Planck kinetic equation. Collisions with neutrals have a negligible effect on the beam transport measurement but do attenuate the beam current. Ā© 2005 American Institute of Physics
Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma device
The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (Ī“n/n ā¼ Ī“/kTe ā¼ 0.5, f ā¼ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E Ć B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (Ļfast/Ļs ā¼ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective. Ā© 2012 American Institute of Physics
Lithium ion sources for investigations of fast ion transport in magnetized plasmas
In order to study the interaction of ions of intermediate energies with plasma fluctuations, two plasma immersible lithium ion sources, based on solid-state thermionic emitters (Li aluminosilicate) were developed. Compared to discharge based ion sources, they are compact, have zero gas load, small energy dispersion, and can be operated at any angle with respect to an ambient magnetic field of up to 4.0 kG. Beam energies range from 400 eV to 2.0 keV with typical beam current densities in the 1 mAcm(2) range. Because of the low ion mass, beam velocities of 100-300 kms are in the range of Alfven speeds in typical helium plasmas in the large plasma device