3 research outputs found

    Static spectroscopy of a dense superfluid

    Full text link
    Dense Bose superfluids, as HeII, differ from dilute ones by the existence of a roton minimum in their excitation spectrum. It is known that this roton minimum is qualitatively responsible for density oscillations close to any singularity, such as vortex cores, or close to solid boundaries. We show that the period of these oscillations, and their exponential decrease with the distance to the singularity, are fully determined by the position and the width of the roton minimum. Only an overall amplitude factor and a phase shift are shown to depend on the details of the interaction potential. Reciprocally, it allows for determining the characteristics of this roton minimum from static "observations" of a disturbed ground state, in cases where the dynamics is not easily accessible. We focus on the vortex example. Our analysis further shows why the energy of these oscillations is negligible compared to the kinetic energy, which limits their influence on the vortex dynamics, except for high curvatures.Comment: 14 pages, 4 figures, extended version, published in J. Low Temp. Phy

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore