19 research outputs found

    Opportunities for low indirect land use biomass for biofuels in Europe

    Get PDF
    Sustainable biofuels are an important tool for the decarbonisation of transport. This is especially true in aviation, maritime, and heavy-duty sectors with limited short-term alternatives. Their use by conventional transport fleets requires few changes to the existing infrastructure and engines, and thus their integration can be smooth and relatively rapid. Provision of feedstock should comply with sustainability principles for (i) producing additional biomass without distorting food and feed markets and (ii) addressing challenges for ecosystem services, including biodiversity, and soil quality. This paper performs a meta-analysis of current research for low indirect land use change (ILUC) risk biomass crops for sustainable biofuels that benefited either from improved agricultural practices or from cultivation in unused, abandoned, or severely degraded land. Two categories of biomass crops are considered here: oil and lignocellulosic. The findings confirm that there are significant opportunities to cultivate these crops in European agro-ecological zones with sustainable agronomic practices both in farming land and in land with natural constraints (unused, abandoned, and degraded land). These could produce additional low environmental impact feedstocks for biofuels and deliver economic benefits to farmer

    Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe

    Get PDF
    Soils form the basis for agricultural production and other ecosystem services, and soil management should aim at improving their quality and resilience. Within the SoilCare project, the concept of soil-improving cropping systems (SICS) was developed as a holistic approach to facilitate the adoption of soil management that is sustainable and profitable. SICS selected with stakeholders were monitored and evaluated for environmental, sociocultural, and economic effects to determine profitability and sustainability. Monitoring results were upscaled to European level using modelling and Europe-wide data, and a mapping tool was developed to assist in selection of appropriate SICS across Europe. Furthermore, biophysical, sociocultural, economic, and policy reasons for (non)adoption were studied. Results at the plot/farm scale showed a small positive impact of SICS on environment and soil, no effect on sustainability, and small negative impacts on economic and sociocultural dimensions. Modelling showed that different SICS had different impacts across Europe-indicating the importance of understanding local dynamics in Europe-wide assessments. Work on adoption of SICS confirmed the role economic considerations play in the uptake of SICS, but also highlighted social factors such as trust. The project's results underlined the need for policies that support and enable a transition to more sustainable agricultural practices in a coherent way

    Risk assessment methodologies of soil threats in Europe: status and options for harmonization for risks by erosion, compaction, salinization, organic matter decline and landslides

    Get PDF
    The EU thematic strategy for soil protection recognizes that soil degradation through erosion, soil organic matter decline, compaction, salinization and landslides occurs in specific areas, and that these areas must be identified in an unequivocal way. Currently, there are various risk assessment methodologies (RAMs) and the question has risen to what extent these RAMs yield similar outcome and, if not, whether the outcome can be harmonized, i.e. whether the results of the various RAMs can be made compatible or comparable. In this study i) the current status of RAMs for erosion, soil organic matter decline, compaction, and salinization in the European Union (EU27) is reviewed, and ii) the need and the options for harmonization are assessed. The need for harmonization was defined as the likelihood of achieving different outcomes when using different RAMs, whereas the options for harmonization refer to the efforts that are required to harmonize soil RAMs. The current status of RAMSs in EU-27 was assessed on the basis of questionnaires, which were sent out to soil specialists and policy officers in all Member States. We received more than 100 (response rate >50%) completed questionnaires. It turned out that many of the so called RAMs are still incomplete; they are ‘process (or threat) quantifications’ rather than methodologies that assess the risk of a soil threat. Moreover, there were significant differences between RAMs for a soil threat in terms of (i) the notion of the threat, (ii) data collection, (iii) data processing, (iv) data interpretation, and (v) risk perception. The need for harmonization appeared highest for erosion and salinization, whereas the options for harmonization were best for SOM decline. Harmonization of soil RAMs may be very complex and for that reason not always feasible. We suggest two options that may facilitate unequivocal identification of risk (or priority) areas for soil threats, i) a two Tiered approach based on data availability and spatial scale and ii) generic harmonization, i.e. combining standardization and harmonization in a rather pragmatic wa

    Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe

    Get PDF
    Soils form the basis for agricultural production and other ecosystem services, and soil management should aim at improving their quality and resilience. Within the SoilCare project, the concept of soil-improving cropping systems (SICS) was developed as a holistic approach to facilitate the adoption of soil management that is sustainable and profitable. SICS selected with stakeholders were monitored and evaluated for environmental, sociocultural, and economic effects to determine profitability and sustainability. Monitoring results were upscaled to European level using modelling and Europe-wide data, and a mapping tool was developed to assist in selection of appropriate SICS across Europe. Furthermore, biophysical, sociocultural, economic, and policy reasons for (non)adoption were studied. Results at the plot/farm scale showed a small positive impact of SICS on environment and soil, no effect on sustainability, and small negative impacts on economic and sociocultural dimensions. Modelling showed that different SICS had different impacts across Europe—indicating the importance of understanding local dynamics in Europe-wide assessments. Work on adoption of SICS confirmed the role economic considerations play in the uptake of SICS, but also highlighted social factors such as trust. The project’s results underlined the need for policies that support and enable a transition to more sustainable agricultural practices in a coherent way

    Deploying ecosystem services to develop sustainable energy landscapes: a case study from the Netherlands

    No full text
    Purpose - The transition to a low carbon future is an emerging challenge and requires the planning and designing of sustainable energy landscapes – landscapes that provide renewable energy while safeguarding the supply of other ecosystem services. The aim of this paper is to present the application of an ecosystem services trade-off assessment in the development of sustainable energy landscapes for long-term strategic planning in a case study in Schouwen-Duivenland, The Netherlands.Design/methodology/approach - The application consists in three activities: in (1) stakeholder mapping hot spots of ecosystem services and renewable energy technologies in a workshop, (2) landscape design principles being discussed by a focus group, (3) experts gathering the information and proceeding with an assessment of the potential synergies and trade-offs.Findings - The case study indicates that (1) deploying the ecosystem services framework in planning and design can enhance the development of sustainable energy landscapes, (2) diversified and accurate spatial reference systems advance the trade-off analysis of both regulating and cultural ecosystem services and (3) the involvement of local stakeholders can advance the trade-off analysis and, ultimately, facilitates the transition to a low-carbon future with sustainable energy landscapes.Originality/value - The originality of this research lies in the creation of an approach for the deployment of ecosystem services in the planning and design of energy transition. This is useful to advance energy transition by enhancing research methods, by providing methods useful for planners and designers and by supporting communities pursuing energy self-sufficiency in a sustainable manner<br/

    Cities on the Grow: Pathways to supporting the sustainable growth of urban food enterprises in London, Reading and Almere

    No full text
    Urban food enterprises play a significant role in generating socio-economic and climate benefits. This community of craft and micro enterprises is diverse with regards to their ideological motivations and business models. Though their funding streams, albeit varied, are predominantly sourced from fixed grants. This places the viability of these enterprises and their potential benefits to local and regional economies, the environment and the communities they serve at risk

    Soil and land information: How to support decision-making?

    No full text
    Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience
    corecore