4,171 research outputs found

    Symmetry Induced 4-Wave Capillary Wave Turbulence

    Full text link
    We report theoretical and experimental results on 4-wave capillary wave turbulence. A system consisting of two inmiscible and incompressible fluids of the same density can be written in a Hamiltonian way for the conjugated pair (η,Ψ)(\eta,\Psi). When given the symmetry z→−zz\to-z, the set of weakly non-linear interacting waves display a Kolmogorov-Zakharov (KZ) spectrum nk∼k−4n_k\sim k^{-4} in wave vector space. The wave system was studied experimentally with two inmiscible fluids of almost equal densities (water and silicon oil) where the capillary surface waves are excited by a low frequency random forcing. The power spectral density (PSD) and probability density function (PDF) of the local wave amplitude are studied. Both theoretical and experimental results are in fairly good agreement with each other.Comment: 6 pages, 2 figure

    Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation

    Full text link
    By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter

    Turbulent flow in graphene

    Full text link
    We demonstrate the possibility of a turbulent flow of electrons in graphene in the hydrodynamic region, by calculating the corresponding turbulent probability density function. This is used to calculate the contribution of the turbulent flow to the conductivity within a quantum Boltzmann approach. The dependence of the conductivity on the system parameters arising from the turbulent flow is very different from that due to scattering.Comment: 4 pages, Latex file, Journal versio

    On the relationship between nonlinear equations integrable by the method of characteristics and equations associated with commuting vector fields

    Full text link
    It was shown recently that Frobenius reduction of the matrix fields reveals interesting relations among the nonlinear Partial Differential Equations (PDEs) integrable by the Inverse Spectral Transform Method (SS-integrable PDEs), linearizable by the Hoph-Cole substitution (CC-integrable PDEs) and integrable by the method of characteristics (ChCh-integrable PDEs). However, only two classes of SS-integrable PDEs have been involved: soliton equations like Korteweg-de Vries, Nonlinear Shr\"odinger, Kadomtsev-Petviashvili and Davey-Stewartson equations, and GL(N,\CC) Self-dual type PDEs, like Yang-Mills equation. In this paper we consider the simple five-dimensional nonlinear PDE from another class of SS-integrable PDEs, namely, scalar nonlinear PDE which is commutativity condition of the pair of vector fields. We show its origin from the (1+1)-dimensional hierarchy of ChCh-integrable PDEs after certain composition of Frobenius type and differential reductions imposed on the matrix fields. Matrix generalization of the above scalar nonlinear PDE will be derived as well.Comment: 14 pages, 1 figur

    Weak Wave Turbulence Scaling Theory for Diffusion and Relative Diffusion in Turbulent Surface Waves

    Get PDF
    We examine the applicability of the weak wave turbulence theory in explaining experimental scaling results obtained for the diffusion and relative diffusion of particles moving on turbulent surface waves. For capillary waves our theoretical results are shown to be in good agreement with experimental results, where a distinct crossover in diffusive behavior is observed at the driving frequency. For gravity waves our results are discussed in the light of ocean wave studies.Comment: 5 pages; for related work visit http://www.imedea.uib.es/~victo

    Partially Massless Spin 2 Electrodynamics

    Get PDF
    We propose that maximal depth, partially massless, higher spin excitations can mediate charged matter interactions in a de Sitter universe. The proposal is motivated by similarities between these theories and their traditional Maxwell counterpart: their propagation is lightlike and corresponds to the same Laplacian eigenmodes as the de Sitter photon; they are conformal in four dimensions; their gauge invariance has a single scalar parameter and actions can be expressed as squares of single derivative curvature tensors. We examine this proposal in detail for its simplest spin 2 example. We find that it is possible to construct a natural and consistent interaction scheme to conserved vector electromagnetic currents primarily coupled to the helicity 1 partially massless modes. The resulting current-current single ``partial-photon'' exchange amplitude is the (very unCoulombic) sum of contact and shorter-range terms, so the partial photon cannot replace the traditional one, but rather modifies short range electromagnetic interactions. We also write the gauge invariant fourth-derivative effective actions that might appear as effective corrections to the model, and their contributions to the tree amplitude are also obtained.Comment: 15 pages, LaTe

    Stabilization of a light bullet in a layered Kerr medium with sign-changing nonlinearity

    Full text link
    Using the numerical solution of the nonlinear Schr\"odinger equation and a variational method it is shown that (3+1)-dimensional spatiotemporal optical solitons, known as light bullets, can be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.Comment: 4 pages, 3 PS figure

    Collapse and stable self-trapping for Bose-Einstein condensates with 1/r^b type attractive interatomic interaction potential

    Full text link
    We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional to 1/rb1/r^b and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein condensate without contact interactions is possible only for b≥2b\ge 2. Case b=2b=2 is critical and requires number of particles to exceed critical value to allow collapse. Critical collapse in that case is strong one trapping into collapsing region a finite number of particles. Case b>2b>2 is supercritical with expected weak collapse which traps rapidly decreasing number of particles during approach to collapse. For b<2b<2 singularity at r=0r=0 is not strong enough to allow collapse but attractive 1/rb1/r^b interaction admits stable self-trapping even in absence of external trapping potential

    Integrable turbulence generated from modulational instability of cnoidal waves

    Full text link
    We study numerically the nonlinear stage of modulational instability (MI) of cnoidal waves, in the framework of the focusing one-dimensional Nonlinear Schrodinger (NLS) equation. Cnoidal waves are the exact periodic solutions of the NLS equation and can be represented as a lattice of overlapping solitons. MI of these lattices lead to development of "integrable turbulence" [Zakharov V.E., Stud. Appl. Math. 122, 219-234 (2009)]. We study the major characteristics of the turbulence for dn-branch of cnoidal waves and demonstrate how these characteristics depend on the degree of "overlapping" between the solitons within the cnoidal wave. Integrable turbulence, that develops from MI of dn-branch of cnoidal waves, asymptotically approaches to it's stationary state in oscillatory way. During this process kinetic and potential energies oscillate around their asymptotic values. The amplitudes of these oscillations decay with time as t^{-a}, 1<a<1.5, the phases contain nonlinear phase shift decaying as t^{-1/2}, and the frequency of the oscillations is equal to the double maximal growth rate of the MI, s=2g_{max}. In the asymptotic stationary state the ratio of potential to kinetic energy is equal to -2. The asymptotic PDF of wave amplitudes is close to Rayleigh distribution for cnoidal waves with strong overlapping, and is significantly non-Rayleigh one for cnoidal waves with weak overlapping of solitons. In the latter case the dynamics of the system reduces to two-soliton collisions, which occur with exponentially small rate and provide up to two-fold increase in amplitude compared with the original cnoidal wave.Comment: 36 pages, 25 figure
    • …
    corecore