50 research outputs found

    Modeling Bell's Non-resonant Cosmic Ray Instability

    Full text link
    We have studied the non-resonant streaming instability of charged energetic particles moving through a background plasma, discovered by Bell (2004). We confirm his numerical results regarding a significant magnetic field amplification in the system. A detailed physical picture of the instability development and of the magnetic field evolution is given.Comment: 12 pages, 4 figures, accepted to Ap

    Diffusive Shock Acceleration with Magnetic Amplification by Non-resonant Streaming Instability in SNRs

    Full text link
    We investigate the diffusive shock acceleration in the presence of the non-resonant streaming instability introduced by Bell (2004). The numerical MHD simulations of the magnetic field amplification combined with the analytical treatment of cosmic ray acceleration permit us to calculate the maximum energy of particles accelerated by high-velocity supernova shocks. The estimates for Cas A, Kepler, SN1006, and Tycho historical supernova remnants are given. We also found that the amplified magnetic field is preferentially oriented perpendicular to the shock front downstream of the fast shock. This explains the origin of the radial magnetic fields observed in young supernova remnants.Comment: 18 pages, 9 figures, accepted to Ap

    The age of mineralization of Mayskoe gold ore deposit (Central Chukotka): results of Re-Os isotopic dating

    Get PDF
    The article presents the results of the sulfide mineralization dating of the Mayskoe gold ore deposit using the Re-Os isotope system and isochron age estimation method of the main sulfide minerals: arsenopyrite, pyrite, and antimonite. The complex multistage formation of the studied sulfides, as well as the close intergrowths of genetically different mineral phases, did not allow obtaining a single rhenium-osmium isochron corresponding to the formation time of sulfide mineralization. Isochrones for single minerals, collected from each sulfide sample, turned out to be the result of isotopically distinct components mixture (radiogenic crustal and non-radiogenic mantle) and do not make sense from the geochronological point of view. In terms of geology, the most significant result of the study is an age estimation of 128.8 ± 4.4 Ma, obtained for the sulfide mineralization of Mayskoe deposit using Re-Os isotope dating of single fractions of pyrite and antimonite of the ore mineralization stage. While arsenopyrite is most closely associated with gold mineralization, one of the arsenopyrite varieties corrodes framboidal pyrite of the pre-ore stage, has a maximum of the crust component in the osmium isotopic composition and forms a mixing line in the isochron diagram with an apparent formation age of 458 ± 18 Ma. The initial osmium isotopic composition of the studied sulfides indicates a mixed mantle-crust source of sulfide mineralization. The issue of simultaneous ore genesis and granitoid magmatism in the Mayskoe deposit remained unresolved (the age of granitoids according to the U-Pb zircon system is 108 Ma). However, a possible solution could be the further determination of the Re-Os isochron age of the ore mineralization sulphides from the single paragenesis of a specific sample containing both arsenopyrite and pyrite (+ antimonite) with gold

    A Simple Model of Cosmic Ray Modulation in the Heliosphere

    Get PDF
    Abstract The cosmic ray modulation by the interplanetary magnetic field of simple geometry is considered. The turbulent component of field is assumed to be proportional to the total field intensity with a proportional coefficient independing on the coordinates but varying with the 11-year cycle. The expected variations are compared with the ground-based results for many years. Methods The heliosphere as a region occupied by the solar wind and interplanetary magnetic field is of interest, first of all, from the point of view of the cosmic ray astrophysics. Characteristics of the heliosphere are manifested in the galactic cosmic ray modulation where aside from the solar activity level, the geometry of interplanetary magnetic field and its alternating property are embodied In view of the complication in the modulation picture, the presence of many peculiarities and acting factors, it is appropriate to have a greatest simplified model with the minimum number of free fitted parameters which, however, would reflect main peculiarities, in particular, a sign-change of the magnetic field. Here such a model of the heliosphere has been suggested, and its influence on highenergy cosmic rays is investigated. The solar wind is assumed to have a radial and constant speed u 0 in magnitude which occupies a sphere of radius R around the Sun equal to 100 AU in order of magnitude. The interplanetary magnetic field has a radial component which changes a sign in the equator plane of the Sun, and its value doesn't depend on the heliolatitude ψ and longitude. The azimuth component predominate almost in the whole volume of the heliosphere is caused by the rotation of the Sun and equals to where H 0 is its value at the distance r 0 , which is determined in such a way that the radial and azimuth components of the field are equal to each other. At u 0 ≈ 400 km/s we have r 0 = 1 AE and H 0 ≈ 3.5 · 10 −5 Gs. The sign "−" corresponds to the pp. 3799-380

    The Relation Between the Surface Brightness and the Diameter for Galactic Supernova Remnants

    Full text link
    In this work, we have constructed a relation between the surface brightness (Σ\Sigma) and diameter (D) of Galactic C- and S-type supernova remnants (SNRs). In order to calibrate the Σ\Sigma-D dependence, we have carefully examined some intrinsic (e.g. explosion energy) and extrinsic (e.g. density of the ambient medium) properties of the remnants and, taking into account also the distance values given in the literature, we have adopted distances for some of the SNRs which have relatively more reliable distance values. These calibrator SNRs are all C- and S-type SNRs, i.e. F-type SNRs (and S-type SNR Cas A which has an exceptionally high surface brightness) are excluded. The Sigma-D relation has 2 slopes with a turning point at D=36.5 pc: Σ\Sigma(at 1 GHz)=8.4−6.3+19.5^{+19.5}_{-6.3}×10−12\times10^{-12} D−5.99−0.33+0.38^{{-5.99}^{+0.38}_{-0.33}} Wm−2^{-2}Hz−1^{-1}ster−1^{-1} (for Σ\Sigma≤3.7×10−21\le3.7\times10^{-21} Wm−2^{-2}Hz−1^{-1}ster−1^{-1} and D≥\ge36.5 pc) and Σ\Sigma(at 1 GHz)=2.7−1.4+2.1^{+2.1}_{-1.4}×\times 10−17^{-17} D−2.47−0.16+0.20^{{-2.47}^{+0.20}_{-0.16}} Wm−2^{-2}Hz−1^{-1}ster−1^{-1} (for Σ\Sigma>3.7×10−21>3.7\times10^{-21} Wm−2^{-2}Hz−1^{-1}ster−1^{-1} and D<<36.5 pc). We discussed the theoretical basis for the Σ\Sigma-D dependence and particularly the reasons for the change in slope of the relation were stated. Added to this, we have shown the dependence between the radio luminosity and the diameter which seems to have a slope close to zero up to about D=36.5 pc. We have also adopted distance and diameter values for all of the observed Galactic SNRs by examining all the available distance values presented in the literature together with the distances found from our Σ\Sigma-D relation.Comment: 45 pages, 2 figures, accepted for publication in Astronomical and Astrophysical Transaction

    Stochastic Acceleration by Turbulence

    Full text link
    The subject of this paper is stochastic acceleration by plasma turbulence, a process akin to the original model proposed by Fermi. We review the relative merits of different acceleration models, in particular the so called first order Fermi acceleration by shocks and second order Fermi by stochastic processes, and point out that plasma waves or turbulence play an important role in all mechanisms of acceleration. Thus, stochastic acceleration by turbulence is active in most situations. We also show that it is the most efficient mechanism of acceleration of relatively cool non relativistic thermal background plasma particles. In addition, it can preferentially accelerate electrons relative to protons as is needed in many astrophysical radiating sources, where usually there are no indications of presence of shocks. We also point out that a hybrid acceleration mechanism consisting of initial acceleration by turbulence of background particles followed by a second stage acceleration by a shock has many attractive features. It is demonstrated that the above scenarios can account for many signatures of the accelerated electrons, protons and other ions, in particular 3^3He and 4^4He, seen directly as Solar Energetic Particles and through the radiation they produce in solar flares.Comment: 29 pages 7 figures for proceedings of ISSI-Bern workshop on Particle Acceleration 201
    corecore