2,392 research outputs found
Nonlocal correlations in the vicinity of the - phase transition in iron within a DMFT plus spin-fermion model approach
We consider nonlocal correlations in iron in the vicinity of the
- phase transition within the spin-rotationally-invariant
dynamical mean-field theory (DMFT) approach, combined with the recently
proposed spin-fermion model of iron. The obtained nonlocal corrections to DMFT
yield a decrease of the Curie temperature of the phase, leading to an
agreement with its experimental value. We show that the corresponding nonlocal
corrections to the energy of the phase are crucially important to
obtain the proximity of energies of and phases in the
vicinity of the iron - transformation.Comment: 5 pages, 2 figure
Effect of density of states peculiarities on Hund's metal behavior
We investigate a possibility of Hund's metal behavior in the Hubbard model
with asymmetric density of states having peak(s). Specifically, we consider the
degenerate two-band model and compare its results to the five-band model with
realistic density of states of iron and nickel, showing that the obtained
results are more general, provided that the hybridization between states of
different symmetry is sufficiently small. We find that quasiparticle damping
and the formation of local magnetic moments due to Hund's exchange interaction
are enhanced by both, the density of states asymmetry, which yields stronger
correlated electron or hole excitations, and the larger density of states at
the Fermi level, increasing the number of virtual electron-hole excitations.
For realistic densities of states these two factors are often interrelated
because the Fermi level is attracted towards peaks of the density of states. We
discuss the implication of the obtained results to various substances and
compounds, such as transition metals, iron pnictides, and cuprates.Comment: 7 pages, 7 figure
Momentum-dependent susceptibilities and magnetic exchange in bcc iron from supercell DMFT calculations
We analyze the momentum- and temperature dependences of the magnetic
susceptibilities and magnetic exchange interaction in paramagnetic bcc iron by
a combination of density functional theory and dynamical mean-field theory
(DFT+DMFT). By considering a general derivation of the orbital-resolved
effective model for spin degrees of freedom for Hund's metals, we relate
momentum-dependent susceptibilities in the paramagnetic phase to the magnetic
exchange. We then calculate non-uniform orbital-resolved susceptibilities at
high-symmetry wave vectors by constructing appropriate supercells in the DMFT
approach. Extracting the irreducible parts of susceptibilities with respect to
Hund's exchange interaction, we determine the corresponding orbital-resolved
exchange interactions, which are then interpolated to the whole Brillouin zone.
Using the spherical model we estimate the temperature dependence of the
resulting exchange between local moments.Comment: 18 pages, 6 figure
Wannier functions and exchange integrals: The example of LiCuO
Starting from a single band Hubbard model in the Wannier function basis, we
revisit the problem of the ligand contribution to exchange and derive explicit
formulae for the exchange integrals in metal oxide compounds in terms of atomic
parameters that can be calculated with constrained LDA and LDA+U. The analysis
is applied to the investigation of the isotropic exchange interactions of
LiCuO, a compound where the Cu-O-Cu angle of the dominant exchange
path is close to 90. Our results show that the magnetic moments are
localized in Wannier orbitals which have strong contribution from oxygen atomic
orbitals, leading to exchange integrals that considerably differ from the
estimates based on kinetic exchange only. Using LSDA+U approach, we also
perform a direct {\it ab-initio} determination of the exchange integrals
LiCuO. The results agree well with those obtained from the Wannier
function approach, a clear indication that this modelization captures the
essential physics of exchange. A comparison with experimental results is also
included, with the conclusion that a very precise determination of the Wannier
function is crucial to reach quantitative estimates.Comment: 8 pages, 8 figure
Semileptonic transition in three--point QCD sum rules and HQET with gluon condensate corrections
Taking into account the gluon condensate contributions, the form factors of
the semileptonic transition with are
calculated in the framework of the three point QCD sum rules. The heavy quark
effective theory limit of the form factors are also computed. The relevant
total decay width as well as the branching ratio are evaluated and compared
with the predictions of the other non-perturbative approaches.Comment: 27 Pages, 4 Figures and 4 Table
Pressure-driven metal-insulator transition in BiFeO from Dynamical Mean-Field Theory
A metal-insulator transition (MIT) in BiFeO under pressure was
investigated by a method combining Generalized Gradient Corrected Local Density
Approximation with Dynamical Mean-Field Theory (GGA+DMFT). Our paramagnetic
calculations are found to be in agreement with experimental phase diagram:
Magnetic and spectral properties of BiFeO3 at ambient and high pressures were
calculated for three experimental crystal structures , and
. At ambient pressure in the phase, an insulating gap of 1.2
eV was obtained in good agreement with its experimental value. Both and
phases have a metal-insulator transition that occurs simultaneously with
a high-spin (HS) to low-spin (LS) transition. The critical pressure for the
phase is 25-33 GPa that agrees well with the experimental observations.
The high pressure and temperature phase exhibits a metallic
behavior observed experimentally as well as in our calculations in the whole
range of considered pressures and undergoes to the LS state at 33 GPa where a
to transition is experimentally observed. The
antiferromagnetic GGA+DMFT calculations carried out for the structure
result in simultaneous MIT and HS-LS transitions at a critical pressure of 43
GPa in agreement with the experimental data
Electronic states of PrCoO: X-ray photoemission spectroscopy and LDA+U density of states studies
Electronic states of PrCoO are studied using x-ray photoemission
spectroscopy. Pr 3d core level and valence band (VB) were recorded
using Mg K source. The core level spectrum shows that the 3d
level is split into two components of multiplicity 4 and 2, respectively due to
coupling of the spin states of the hole in 3d with Pr 4f holes spin
state. The observed splitting is 4.5 eV. The VB spectrum is interpreted using
density of states (DOS) calculations under LDA and LDA+U. It is noted that LDA
is not sufficient to explain the observed VB spectrum. Inclusion of on-site
Coulomb correlation for Co 3d electrons in LDA+U calculations gives DOS which
is useful in qualitative explanation of the ground state. However, it is
necessary to include interactions between Pr 4f electrons to get better
agreement with experimental VB spectrum. It is seen that the VB consists of Pr
4f, Co 3d and O 2p states. Pr 4f, Co 3d and O 2p bands are highly mixed
indicating strong hybridization of these three states. The band near the Fermi
level has about equal contributions from Pr 4f and O 2p states with somewhat
smaller contribution from Co 3d states. Thus in the Zaanen, Sawatzky, and Allen
scheme PrCoO can be considered as charge transfer insulator. The charge
transfer energy can be obtained using LDA DOS calculations and the
Coulomb-exchange energy U' from LDA+U. The explicit values for PrCoO are
= 3.9 eV and U' = 5.5 eV; the crystal field splitting and 3d bandwidth
of Co ions are also found to be 2.8 and 1.8 eV, respectively.Comment: 12 pages, 7 figures; to appear J. Phys.: Condens. Matte
- …