28 research outputs found

    Crossover behavior and multi-step relaxation in a schematic model of the cut-off glass transition

    Get PDF
    We study a schematic mode-coupling model in which the ideal glass transition is cut off by a decay of the quadratic coupling constant in the memory function. (Such a decay, on a time scale tau_I, has been suggested as the likely consequence of activated processes.) If this decay is complete, so that only a linear coupling remains at late times, then the alpha relaxation shows a temporal crossover from a relaxation typical of the unmodified schematic model to a final strongly slower-than-exponential relaxation. This crossover, which differs somewhat in form from previous schematic models of the cut-off glass transition, resembles light-scattering experiments on colloidal systems, and can exhibit a `slower-than-alpha' relaxation feature hinted at there. We also consider what happens when a similar but incomplete decay occurs, so that a significant level of quadratic coupling remains for t>>tau_I. In this case the correlator acquires a third, weaker relaxation mode at intermediate times. This empirically resembles the beta process seen in many molecular glass formers. It disappears when the initial as well as the final quadratic coupling lies on the liquid side of the glass transition, but remains present even when the final coupling is only just inside the liquid (so that the alpha relaxation time is finite, but too long to measure). Our results are suggestive of how, in a cut-off glass, the underlying `ideal' glass transition predicted by mode-coupling theory can remain detectable through qualitative features in dynamics.Comment: 14 pages revtex inc 10 figs; submitted to pr

    Spectral Shape of Relaxations in Silica Glass

    Full text link
    Precise low-frequency light scattering experiments on silica glass are presented, covering a broad temperature and frequency range (9 GHz < \nu < 2 THz). For the first time the spectral shape of relaxations is observed over more than one decade in frequency. The spectra show a power-law low-frequency wing of the relaxational part of the spectrum with an exponent α\alpha proportional to temperature in the range 30 K < T < 200 K. A comparison of our results with those from acoustic attenuation experiments performed at different frequencies shows that this power-law behaviour rather well describes relaxations in silica over 9 orders of magnitude in frequency. These findings can be explained by a model of thermally activated transitions in double well potentials.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers

    Full text link
    The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. Varying the external thermodynamic parameters a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.Comment: 13 pages, 8 figure

    On the origin of quasi-elastic light scattering in glasses

    No full text
    It is found that the polarised quasi-elastic light scattering (QELS) in three investigated glasses, namely silica, o-terphenyl and ethanol, exhibits a step-wise increase of intensity when passing the frequency of the longitudinal Brillouin line towards lower frequencies, keeping, however, the same frequency dependence as the depolarised spectrum. The latter shows no such excess QELS. The amplitude of this excess QELS in polarised scattering is proportional to the ratio of the integral intensities of the Brillouin line and the boson peak, while the relaxation mechanisms are the same for both polarised and depolarised spectra. This we take as a clear evidence that the dominant contribution to QELS in glasses arises due to vibrational relaxation
    corecore