969 research outputs found
Recommended from our members
Fish and chips with a side order of Trans fat: The nutrition implications of eating from fastfood outlets: a report on eating out in east London
Directors\u27 Duty Obtain a Fair Price in the Conversion of Nonprofit Hospitals
Boards of Directors of tax-exempt hospitals are increasingly struggling with whether to convert their facilities to for-profit status. Other than the traditional duties of loyalty and fair dealings imposed upon directors, there is currently little guidance to assure that boards obtain a fair price for the hospital in such conversions. The author provides recommendations to assure proper valuation
High density Schottky barrier IRCCD sensors for SWIR applications at intermediate temperature
Monolithic 32 x 64 and 64 x 1:128 palladium silicide (Pd2Si) interline transfer infrared charge coupled devices (IRCCDs) sensitive in the 1 to 3.5 micron spectral band were developed. This silicon imager exhibits a low response nonuniformity of typically 0.2 to 1.6% rms, and was operated in the temperature range between 40 to 140 K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 microns, 5.6% at 1.65 microns 2.2% at 2.22 microns. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detectors is 0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate temperatures at TV frame rates. Typical dark current level measured at 120 K on the FPA is 2 nA/sq cm. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 micron bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 micron center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors
NASA Lewis steady-state heat pipe code users manual
The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user
Some Low Dimensional Evidence for the Weak Gravity Conjecture
We discuss a few examples in 2+1 dimensions and 1+1 dimensions supporting a
recent conjecture concerning the relation between the Planck scale and the
coupling strength of a non-gravitional interaction, unlike those examples in
3+1 dimensions, we do not have to resort to exotic physics such as small black
holes. However, the result concerning these low dimensional examples is a
direct consequence of the 3+1 dimensional conjecture.Comment: 7 pages, harvma
Recommended from our members
Intumescent Flame Retardant Polyamide 11 Nanocomposites
Current polyamide 11 and 12 are lacking in fire retardancy and high strength/high heat
resistance characteristics for a plethora of fabricated parts that are desired and required
for performance driven applications. The introduction of selected nanoparticles such as
surface modified montmorillonite (MMT) clay or carbon nanofibers (CNFs), combined
with a conventional intumescent flame retardant (FR) additive into the polyamide
11/polyamide 12 (PA11/PA12) by melt processing conditions has resulted in the
preparation of a family of intumescent polyamide nanocomposites. These intumescent
polyamide 11 and 12 nanocomposites exhibit enhanced polymer performance
characteristics, i.e., fire retardancy, high strength and high heat resistance and are
expected to expand the market opportunities for polyamide 11 and polyamide 12 polymer
manufacturers.
The objective of this research is to develop improved polyamide 11 and 12 polymers with
enhanced flame retardancy, thermal, and mechanical properties for selective laser
sintering (SLS) rapid manufacturing (RM). In the present study, a nanophase was
introduced into the polyamide 11 and combining it with a conventional intumescent FR
additive via twin screw extrusion. Arkema RILSAN® polyamide 11 molding polymer
pellets were examined with two types of nanoparticles: chemically modified
montmorillonite (MMT) organoclays, and carbon nanofibers (CNFs); and Clairant’s
Exolit® OP 1230 intumescent FR additive were used to create a family of FR
intumescent polyamide 11 nanocomposites.
Transmission electron microscopy (TEM) was used to determine the degree of
nanoparticles dispersion. Injection molded specimens were fabricated for physical,
thermal, and flammability measurements. Thermal stability of these intumescent
polyamide 11 nanocomposites was examined by TGA. Flammability properties were
obtained using the Cone Calorimeter at an external heat flux of 35 kW/m
2
and UL 94
Test Method. Heat deflection temperatures (HDT) were also measured. TEM
micrographs, physical, thermal, and flammability properties are presented. FR
intumescent polyamide 11 nanocomposites properties are compared with polyamide 11
baseline polymer. Based on flammability and mechanical material performance, selective
polymers including polyamide 11 nanocomposites and control polyamide 11 will be
cryogenically ground into fine powders for SLS RM processing. SLS specimens will be
fabricated for thermal, flammability, and mechanical properties characterization.Mechanical Engineerin
Closing the Food Gap in Adams County: A Proposal for Comprehensive Solutions through Community Action
Today, in Adams County, we have two food systems. The 20% who live in poverty survive on food stamps, the food pantry, church donations, and trips to discount food vendors. Those with more financial stability could choose from an abundance of healthy, sustainably produced, local and international foods. We have come to accept these two food systems as the norm without critically analyzing how it is affecting individuals and the health of our communities.
In addition to reducing the disparity and closing the food gap, this initiative is focused on building our local economy and educating our community about nutrition and the benefit of local foods in order to promote a more sustainable social, environmental and economic future.
This paper begins an investigation of community food security in Adams County and makes recommendations to start the process of finding stronger community solutions. The data represented here is drawn from community discussions and programmatic statistics. It is an initial assessment to be followed up by a more comprehensive study and analysis
- …