474 research outputs found

    Spectroscopic fingerprints of a surface Mott-Hubbard insulator: the case of SiC(0001)

    Full text link
    We discuss the spectroscopic fingerprints that a surface Mott-Hubbard insulator should show at the intra-atomic level. The test case considered is that of the Si-terminated SiC(0001) sqrt{3}xsqrt{3} surface, which is known experimentally to be insulating. We argue that, due to the Mott-Hubbard phenomenon, spin unpaired electrons in the Si adatom dangling bonds are expected to give rise to a Si-2p core level spectrum with a characteristic three-peaked structure, as seen experimentally. This structure results from the joint effect of intra-atomic exchange, spatial anisotropy, and spin-orbit coupling. Auger intensities are also discussed.Comment: 4 pages, 2 figures, ECOSS-18 conferenc

    First Principles Calculations of Charge and Spin Density Waves of sqr3-Adsorbates on Semiconductors

    Full text link
    We present ab-initio electronic structure results on the surface of sqr3 adsorbates. In particular, we address the issue of metal-insulator instabilities, charge-density-waves (CDWs) or spin-density-waves (SDWs), driven by partly filled surface states and their 2D Fermi surface, and/or by the onset of magnetic instabilities. The focus is both on the newly discovered commensurate CDW transitions in the Pb/Ge(111) and Sn/Ge(111) structures, and on the puzzling semiconducting behavior of the Pb/Ge(111), K/Si(111):B and SiC(0001) surfaces. In all cases, the main factor driving the instability appears to be an extremely narrow surface state band. We have carried out so far preliminary calculations for the Si/Si(111) surface, chosen as our model system, within the gradient corrected local density (LDA+GC) and local spin density (LSD+GC) approximations, with the aim of understanding the possible interplay between 2D Fermi surface and electron correlations in the surface + adsorbate system. Our spin- unrestricted results show that the sqr3 paramagnetic surface is unstable towards a commensurate SDW with periodicity 3x3 and magnetization 1/3.Comment: 9 pages, 4 Postscript figures, to be published in Surf. Sc

    Ferroelectricity and isotope effects in hydrogen-bonded KDP crystals

    Full text link
    Based on an accurate first principles description of the energetics in H-bonded KDP, we conduct a first study of nuclear quantum effects and of the changes brought about by deuteration. Cluster tunneling involving also heavy ions is allowed, the main effect of deuteration being a depletion of the proton probability density at the O-H-O bridge center, which in turn weakens its proton-mediated covalent bonding. The ensuing lattice expansion couples selfconsistently with the proton off-centering, thus explaining both the giant isotope effect, and its close connection with geometrical effects.Comment: 4 two-column pages, 4 figure

    Disproportionation Phenomena on Free and Strained Sn/Ge(111) and Sn/Si(111) Surfaces

    Full text link
    Distortions of the 3×3\sqrt3\times\sqrt3 Sn/Ge(111) and Sn/Si(111) surfaces are shown to reflect a disproportionation of an integer pseudocharge, QQ, related to the surface band occupancy. A novel understanding of the (3×3)(3\times3)-1U (``1 up, 2 down'') and 2U (``2 up, 1 down'') distortions of Sn/Ge(111) is obtained by a theoretical study of the phase diagram under strain. Positive strain keeps the unstrained value Q=3 but removes distorsions. Negative strain attracts pseudocharge from the valence band causing first a (3×3)(3\times3)-2U distortion (Q=4) on both Sn/Ge and Sn/Si, and eventually a (3×3)(\sqrt3\times\sqrt3)-3U (``all up'') state with Q=6. The possibility of a fluctuating phase in unstrained Sn/Si(111) is discussed.Comment: Revtex, 5 pages, 3 figure

    Electron-phonon interaction at the Be(0001) surface

    Full text link
    We present a first principle study of the electron-phonon (e-p) interaction at the Be(0001) surface. The real and imaginary part of the e-p self energy are calculated for the surface state in the binding energy range from the Γˉ\bar{\Gamma} point to the Fermi level. Our calculation shows an overall good agreement with several photoemission data measured at high and low temperatures. Additionally, we show that the energy derivative of real part of the self-energy presents a strong temperature and energy variation close to EFE_{F}, making it difficult to measure its value just at EFE_{F}.Comment: Accepted in Phys. Rev. Lett., 5 figure

    Quantum annealing of the Traveling Salesman Problem

    Full text link
    We propose a path-integral Monte Carlo quantum annealing scheme for the symmetric Traveling Salesman Problem, based on a highly constrained Ising-like representation, and we compare its performance against standard thermal Simulated Annealing. The Monte Carlo moves implemented are standard, and consist in restructuring a tour by exchanging two links (2-opt moves). The quantum annealing scheme, even with a drastically simple form of kinetic energy, appears definitely superior to the classical one, when tested on a 1002 city instance of the standard TSPLIB.Comment: 5 pages, 2 figure

    Electron-vibration coupling constants in positively charged fullerene

    Full text link
    Recent experiments have shown that C60 can be positively field-doped. In that state, fullerene exhibits a higher resistivity and a higher superconducting temperature than the corresponding negatively doped state. A strong intramolecular hole-phonon coupling, connected with the Jahn-Teller effect of the isolated positive ion, is expected to be important for both properties, but the actual coupling strengths are so far unknown. Based on density functional calculations, we determine the linear couplings of the two a_g, six g_g, and eight h_g vibrational modes to the H_u HOMO level of the C60 molecule. The couplings predict a D_5 distortion, and an H_u vibronic ground state for C60^+. They are also used to generate the dimensionless coupling constant which controls the superconductivity and the phonon contribution to the electrical resistivity in the crystalline phase. We find that is 1.4 times larger in positively-charged C60 than in the negatively-doped case. These results are discussed in the context of the available transport data and superconducting temperatures. The role of higher orbital degeneracy in superconductivity is also addressed.Comment: 22 pages - 3 figures. This revision includes few punctuation corrections from proofreadin
    corecore