1,606 research outputs found

    Alien Registration- Toppi, Daniel S. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/25794/thumbnail.jp

    Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation

    Get PDF
    Both Fe deficiency and Cd exposure induce rapid changes in the S nutritional requirement of plants. The aim of this work was to characterize the strategies adopted by plants to cope with both Fe deficiency (release of phytosiderophores) and Cd contamination [production of glutathione (GSH) and phytochelatins] when grown under conditions of limited S supply. Experiments were performed in hydroponics, using barley plants grown under S sufficiency (1.2mM sulphate) and S deficiency (0mM sulphate), with or without Fe III-EDTA at 0.08mM for 11d and subsequently exposed to 0.05mM Cd for 24h or 72h. In S-sufficient plants, Fe deficiency enhanced both root and shoot Cd concentrations and increased GSH and phytochelatin levels. In S-deficient plants, Fe starvation caused a slight increase in Cd concentration, but this change was accompanied neither by an increase in GSH nor by an accumulation of phytochelatins. Release of phytosiderophores, only detectable in Fe-deficient plants, was strongly decreased by S deficiency and further reduced after Cd treatment. In roots Cd exposure increased the expression of the high affinity sulphate transporter gene (HvST1) regardless of the S supply, and the expression of the Fe deficiency-responsive genes, HvYS1 and HvIDS2, irrespective of Fe supply. In conclusion, adequate S availability is necessary to cope with Fe deficiency and Cd toxicity in barley plants. Moreover, it appears that in Fe-deficient plants grown in the presence of Cd with limited S supply, sulphur may be preferentially employed in the pathway for biosynthesis of phytosiderophores, rather than for phytochelatin production

    Tools for in vitro propagation/synchronization of the liverwort Marchantia polymorpha and application of a validated HPLC-ESI-MS-MS method for glutathione and phytochelatin analysis

    Get PDF
    Bryophytes, due to their poikilohydric nature and peculiar traits, are useful and versatile organisms for studies on metal accumulation and detoxification in plants. Among bryophytes, the liverwort Marchantia polymorpha is an excellent candidate as a model organism, having a key role in plant evolutionary history. In particular, M. polymorpha axenic cultivation of gametophytes offers several advantages, such as fast growth, easy propagation and high efficiency of crossing. Thus, the main purpose of this work was to promote and validate experimental procedures useful in the establishment of a standardized set-up of M. polymorpha gametophytes, as well as to study cadmium detoxification processes in terms of thiol-peptide production, detection and characterisation by HPLC-mass spectrometry. The results show how variations in the composition of the Murashige and Skoog medium impact the growth rate or development of this liverwort, and what levels of glutathione and phytochelatins are produced by gametophytes to counteract cadmium stress

    Phosphorus and metal removal combined with lipid production by the green microalga Desmodesmus sp.: An integrated approach

    Get PDF
    This work focused on the potential of Desmodesmus sp. to be employed for wastewater 15 bioremediation and biodiesel production. The green microalga was grown in a culture medium with a phosphorus (P) content of 4.55 mg L-1 16 simulating an industrial effluent; it was also exposed to a bimetal solution of copper (Cu) and nickel (Ni) for 2 days. P removal was between 94 and 100%. After 2 days of exposure to metals, 94% of Cu and 85% of Ni were removed by Desmodesmus sp. Adsorption tests showed that the green microalga was able to remove up to 90% of Cu and 43% of Ni in less than 30 minutes. The presence of metals decreased the lipid yield, but biodiesel quality from the biomass obtained from metal exposed samples was higher than that grown without metals. This result revealed that this technology could offer a new alternative solution to environmental pollution and carbon-neutral fuel generation

    Retaining unlogged patches in Mediterranean oak forests may preserve threatened forest macrolichens

    Get PDF
    Forest management practices may heavily impact epiphytic (tree inhabiting) organisms. Retaining tree patches and buffer strips in logged stands may contribute to preserve ecosystem functioning and the vitality of epiphytic organisms in managed forests. To test these statements, the threatened forest macrolichen Lobaria pulmonaria (L.) Hoffm. was used as a model species, since it is a “flag” indicator species of forest ecosystems with long ecological continuity. To this purpose, photosynthetic performances, thallus anatomy and water holding capacity (WHC) of samples of L. pulmonaria were investigated in a logged mixed oak forest (Tuscany, Italy), confronting lichen thalli from retained- forest patches and retained-isolated trees, 18 months after logging. Compared with those of retained-forest patches, thalli on the trunks of retained- isolated trees were thinner and showed lower vitality (as indicated by the potential quantum yield of primary photochemistry – FV/FM and the index of overall photosynthetic performance – PIABS), as well as lower water holding capacity. In contrast, thalli from forest patches had performances comparable to those of healthy samples from unlogged forests

    Scintillating fiber devices for particle therapy applications

    Get PDF
    Particle Therapy (PT) is a radiation therapy technique in which solid tumors are treated with charged ions and exploits the achievable highly localized dose delivery, allowing to spare healthy tissues and organs at risk. The development of a range monitoring technique to be used on-line, during the treatment, capable to reach millimetric precision is considered one of the important steps towards an optimization of the PT efficacy and of the treatment quality. To this aim, charged secondary particles produced in the nuclear interactions between the beam particles and the patient tissues can be exploited. Besides charged secondaries, also neutrons are produced in nuclear interactions. The secondary neutron component might cause an undesired and not negligible dose deposition far away from the tumor region, enhancing the risk of secondary malignant neoplasms that can develop even years after the treatment. An accurate neutron characterization (flux, energy and emission profile) is hence needed for a better evaluation of long-term complications. In this contribution two tracker detectors, both based on scintillating fibers, are presented. The first one, named Dose Profiler (DP), is planned to be used as a beam range monitor in PT treatments with heavy ion beams, exploiting the charged secondary fragments production. The DP is currently under development within the INSIDE (Innovative Solutions for In-beam DosimEtry in hadrontherapy) project. The second one is dedicated to the measurement of the fast and ultrafast neutron component produced in PT treatments, in the framework of the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. Results of the first calibration tests performed at the Trento Protontherapy center and at CNAO (Italy) are reported, as well as simulation studies

    Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    Get PDF
    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presente

    First Ex-Vivo Validation of a Radioguided Surgery Technique with beta- Radiation

    Full text link
    Purpose: A radio-guided surgery technique with beta- -emitting radio-tracers was suggested to overcome the effect of the large penetration of gamma radiation. The feasibility studies in the case of brain tumors and abdominal neuro-endocrine tumors were based on simulations starting from PET images with several underlying assumptions. This paper reports, as proof-of-principle of this technique, an ex-vivo test on a meningioma patient. This test allowed to validate the whole chain, from the evaluation of the SUV of the tumor, to the assumptions on the bio-distribution and the signal detection. Methods: A patient affected by meningioma was administered 300 MBq of 90Y-DOTATOC. Several samples extracted from the meningioma and the nearby Dura Mater were analyzed with a beta- probe designed specifically for this radio-guided surgery technique. The observed signals were compared both with the evaluation from the histology and with the Monte Carlo simulation. Results: we obtained a large signal on the bulk tumor (105 cps) and a significant signal on residuals of \sim0.2 ml (28 cps). We also show that simulations predict correctly the observed yields and this allows us to estimate that the healthy tissues would return negligible signals (~1 cps). This test also demonstrated that the exposure of the medical staff is negligible and that among the biological wastes only urine has a significant activity. Conclusions: This proof-of-principle test on a patient assessed that the technique is feasible with negligible background to medical personnel and confirmed that the expectations obtained with Monte Carlo simulations starting from diagnostic PET images are correct.Comment: 17 pages, 4 Figs, Accepted by Physica Medic

    Intraoperative probe detecting β− decays in brain tumour radio-guided surgery

    Get PDF
    Abstract Radio-guided surgery (RGS) is a technique to intraoperatively detect tumour remnants, favouring a radical resection. Exploiting β − emitting tracers provides a higher signal to background ratio compared to the established technique with γ radiation, allowing the extension of the RGS applicability range. We developed and tested a detector based on para-terphenyl scintillator with high sensitivity to low energy electrons and almost transparent to γ s to be used as intraoperative probe for RGS with β − emitting tracer. Portable read out electronics was customised to match the surgeon needs. This probe was used for preclinical test on specific phantoms and a test on "ex vivo" specimens from patients affected by meningioma showing very promising results for the application of this new technique on brain tumours. In this paper, the prototype of the intraoperative probe and the tests are discussed; then, the results on meningioma are used to make predictions on the performance of the probe detecting residuals of a more challenging and more interesting brain tumour: the glioma

    In Car Audio

    Get PDF
    This chapter presents implementations of advanced in Car Audio Applications. The system is composed by three main different applications regarding the In Car listening and communication experience. Starting from a high level description of the algorithms, several implementations on different levels of hardware abstraction are presented, along with empirical results on both the design process undergone and the performance results achieved
    corecore