279 research outputs found

    Are matrix metalloproteinases the missing link?

    Get PDF
    none3openMANNELLO F; TONTI G.A.; PAPA SMannello, Ferdinando; Tonti, GAETANA ANNA MARIA; Papa, Stefan

    Extending Bauer's corollary to fractional derivatives

    Full text link
    We comment on the method of Dreisigmeyer and Young [D. W. Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative systems with fractional derivatives. It was previously hoped that using fractional derivatives in an action would allow us to derive a single retarded equation of motion using a variational principle. It is proven that, under certain reasonable assumptions, the method of Dreisigmeyer and Young fails.Comment: Accepted Journal of Physics A at www.iop.org/EJ/journal/JPhys

    DNA quantification to assess Zymoseptoria tritici on a susceptible cultivar of durum wheat to establish the best timing for fungicide application in an italian environment

    Get PDF
    Zymoseptoria tritici, a globally distributed pathogen, is responsible of Septoria tritici blotch (STB), one of the most damaging wheat diseases. In Italy the incidence of STB has increased during the past few years. The presence of Z. tritici on flag leaves of susceptible durum wheat plants, cultivar San Carlo, after a single artificial inoculation with two inoculum concentrations at different vegetative stages has been evaluated in the plain of Bologna (North of Italy), in a two year field study (2012–2013). The pathogen presence was also assessed in natural infection conditions after a fungicide application in the second year (2013). The results obtained, by visual examination (Incidence, Disease Severity) and DNA quantification by Real time PCR, demonstrated that BBCH 39 (flag leaf stage) is the most susceptible vegetative stage, independently of inoculum concentration and climatic conditions. A good correlation between Disease Severity and DNA quantity was observed in either sampling methods, entire flag leaves and flag leaf discs. Thereafter the most suitable period to obtain the best crop protection with only one fungicide treatment is the flag leaf stage

    Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy

    Full text link
    The lattice Gel'fand-Dikii hierarchy was introduced by Nijhoff, Papageorgiou, Capel and Quispel in 1992 as the family of partial difference equations generalizing to higher rank the lattice Korteweg-de Vries systems, and includes in particular the lattice Boussinesq system. We present a Lagrangian for the generic member of the lattice Gel'fand-Dikii hierarchy, and show that it can be considered as a Lagrangian 2-form when embedded in a higher dimensional lattice, obeying a closure relation. Thus the multiform structure proposed in arXiv:0903.4086v2 [nlin.SI] is extended to a multi-component system.Comment: 12 page

    Intraventricular flow patterns during right ventricular apical pacing

    Get PDF
    Objectives To assess differences in blood flow momentum (BFM) and kinetic energy (KE) dissipation in a model of cardiac dyssynchrony induced by electrical right ventricular apical (RVA) stimulation compared with spontaneous sinus rhythm. Methods We cross-sectionally enrolled 12 consecutive patients (mean age 74\ub18 years, 60% male, mean left ventricular ejection fraction 58%\ub16 %), within 48 hours from pacemaker (PMK) implantation. Inclusion criteria were: age>18 years, no PMK-dependency, sinus rhythm with a spontaneous narrow QRS at the ECG, preserved ejection fraction (>50%) and a low percentage of PMKstimulation (<20%). All the participants underwent a complete echocardiographic evaluation, including left ventricular strain analysis and particle image velocimetry. Results Compared with sinus rhythm, BFM shifted from 27\ub13.3 to 34\ub17.6\ub0 (p=0.016), while RVA-pacing was characterised by a 35% of increment in KE dissipation, during diastole (p=0.043) and 32% during systole (p=0.016). In the same conditions, left ventricle global longitudinal strain (LV GLS) significantly decreased from 17\ub13.3 to 11%\ub12.8% (p=0.004) during RVA-stimulation. At the multivariable analysis, BFM and diastolic KE dissipation were significantly associated with LV GLS deterioration (Beta Coeff.=0.54, 95% CI 0.07 to 1.00, p=0.034 and Beta Coeff.=0.29, 95% CI 0.02 to 0.57, p=0.049, respectively). Conclusions In RVA-stimulation, BFM impairment and KE dissipation were found to be significantly associated with LV GLS deterioration, when controlling for potential confounders. Such changes may favour the onset of cardiac remodelling and sustain heart failure

    Using Electronic Institutions to secure Grid environments

    No full text
    Abstract. As the technical infrastructure to support Grid environments matures, attention must be focused on integrating such technical infrastructure with technologies to support more dynamic access to services, and ensuring that such access is appropriately monitored and secured. Such capabilities will be key in providing a safe environment that allow the creation of virtual organisations at run time. This paper addresses this issue by analysing how work from within the field of Electronic Institutions (EIs) can be employed to provide security support for Grid environments, and introduces the notion of a Semantic Firewall (SFW) responsible for mediating interactions with protected services given a set of access policies. An overarching guideline is that such integration should be pragmatic, taking into account the real-life lessons learned whilst developing, deploying and using the GRIA infrastructure for Grid environments

    A Variational Procedure for Time-Dependent Processes

    Full text link
    A simple variational Lagrangian is proposed for the time development of an arbitrary density matrix, employing the "factorization" of the density. Only the "kinetic energy" appears in the Lagrangian. The formalism applies to pure and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport theory, etc. It recaptures the Least Dissipation Function condition of Rayleigh-Onsager {\bf and in practical applications is flexible}. The variational proposal is tested on a two level system interacting that is subject, in one instance, to an interaction with a single oscillator and, in another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure

    Design of a Low‐Power Radio Frequency Unit and Its Application for Bacterial Inactivation under Laboratory Conditions

    Full text link
    A lab‐scale low‐power free‐running radio frequency (RF) oscillator operating at a frequency of 27.12 ± 0.50 MHz was developed to be suitable for fundamental microbiological research topics. Calibration and validation were conducted for two common foodborne pathogens in relevant microbiological growth media, i.e., Salmonella Typhimurium and Listeria monocytogenes in Tryptic Soy Broth and Brain–Heart Infusion broth, respectively. The evolution of temperature, frequency, and power consumption was monitored during treatments, both with and without bacterial cells. The setup operated within the predefined frequency range, reaching temperatures of 71–76 °C after 15 min. The average power consumption ranged between 12 and 14 W. The presence of bacteria did not significantly influence the operational parameters. The inactivation potential of the RF setup was validated, demonstrating the absence of viable cells after 8 and 10 min of treatment, for S. Typhimurium and L. monocytogenes, respectively. In future studies, the setup can be used to conduct fundamental microbiological studies on RF inactivation. The setup can provide added value to the scientific field, since (i) no consensus has been reached on the inactivation mechanisms of RF inactivation of pathogens in foods and (ii) most commercial RF setups are unsuitable to adopt for fundamental studies. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This work was funded by the KU Leuven Research Fund through project C24/18/046, by the Research Foundation Flanders (FWO) through project G0B4121N, and by the EU H2020 research and innovation program under the Marie Skłodowska‐Curie grant agreement no. 956126. Authors Davy Verheyen and Simen Akkermans were funded by the Research Foundation Flanders (FWO), grant numbers 1254421N and 1224620N, respectively
    corecore