586 research outputs found

    Cumulative Autoimmunity: T Cell Clones Recognizing Several Self-Epitopes Exhibit Enhanced Pathogenicity

    Get PDF
    T cell receptor (TCR) recognition is intrinsically polyspecific. In the field of autoimmunity, recognition of both self- and microbial peptides by a single TCR has led to the concept of molecular mimicry. However, findings made by our group and others clearly demonstrate that a given TCR can also recognize multiple distinct self-peptides. Based on experimental data we argue that recognition of several self-peptides increases the pathogenicity of an autoreactive T cell; a property we refer to as “cumulative autoimmunity.” The mechanisms of such increased pathogenicity, and the implications of cumulative autoimmunity regarding the pathophysiology of T cell-mediated autoimmune diseases will be discussed

    Environmental Health Indicators: A review of initiatives worldwide

    Get PDF
    Purpose – The extent to which research into the design and development of environmental health indicators (EHIs) has translated into operational programmes is unclear. The purpose of this paper is to identify EHI initiatives worldwide, distil the EHIs and draw lessons from the experience. Design/methodology/approach – A systematic internet-based review was undertaken. Programmes were selected for inclusion if they: first, had the ability to monitor both the physical environment and associated health outcomes; and second, the parent agency had the ability to influence policies related to the environment and health. Findings – The small number of eligible programmes indicates EHI initiatives are not yet well established, especially in developing countries. The use of indicators was also limited by uncertainties in the exposure-response relationships that they implied, and the consequent inability to translate the indicators into a common measure of health impact. In addition, there is no information on the extent to which the indicators have been applied in decision making, nor on the policy implications of using indicators. Practical implications – More effort is needed to encourage the development and use of more balanced and informative sets of indicators, and to evaluate their use and outcomes in terms of health benefits. Originality/value – The time is right for a substantial review paper on EHIs as they are now being used by a number of organisations and to the knowledge this is the first review of operational EHI programmes worldwide

    Direct characterisation of tuneable few-femtosecond dispersive-wave pulses in the deep UV

    Get PDF
    Dispersive wave emission (DWE) in gas-filled hollow-core dielectric waveguides is a promising source of tuneable coherent and broadband radiation, but so far the generation of few-femtosecond pulses using this technique has not been demonstrated. Using in-vacuum frequency-resolved optical gating, we directly characterise tuneable 3fs pulses in the deep ultraviolet generated via DWE. Through numerical simulations, we identify that the use of a pressure gradient in the waveguide is critical for the generation of short pulses.Comment: 5 pages, 4 figure

    Optimisation of Quantum Trajectories Driven by Strong-field Waveforms

    Get PDF
    Quasi-free field-driven electron trajectories are a key element of strong-field dynamics. Upon recollision with the parent ion, the energy transferred from the field to the electron may be released as attosecond duration XUV emission in the process of high harmonic generation (HHG). The conventional sinusoidal driver fields set limitations on the maximum value of this energy transfer, and it has been predicted that this limit can be significantly exceeded by an appropriately ramped-up cycleshape. Here, we present an experimental realization of such cycle-shaped waveforms and demonstrate control of the HHG process on the single-atom quantum level via attosecond steering of the electron trajectories. With our optimized optical cycles, we boost the field-ionization launching the electron trajectories, increase the subsequent field-to-electron energy transfer, and reduce the trajectory duration. We demonstrate, in realistic experimental conditions, two orders of magnitude enhancement of the generated XUV flux together with an increased spectral cutoff. This application, which is only one example of what can be achieved with cycle-shaped high-field light-waves, has farreaching implications for attosecond spectroscopy and molecular self-probing

    Attosecond streaking of photoelectron emission from disordered solids

    Full text link
    Attosecond streaking of photoelectrons emitted by extreme ultraviolet light has begun to reveal how electrons behave during their transport within simple crystalline solids. Many sample types within nanoplasmonics, thin-film physics, and semiconductor physics, however, do not have a simple single crystal structure. The electron dynamics which underpin the optical response of plasmonic nanostructures and wide-bandgap semiconductors happen on an attosecond timescale. Measuring these dynamics using attosecond streaking will enable such systems to be specially tailored for applications in areas such as ultrafast opto-electronics. We show that streaking can be extended to this very general type of sample by presenting streaking measurements on an amorphous film of the wide-bandgap semiconductor tungsten trioxide, and on polycrystalline gold, a material that forms the basis of many nanoplasmonic devices. Our measurements reveal the near-field temporal structure at the sample surface, and photoelectron wavepacket temporal broadening consistent with a spread of electron transport times to the surface

    Gene gun-mediated DNA vaccination enhances antigen-specific immunotherapy at a late preclinical stage of type 1 diabetes in nonobese diabetic mice

    Get PDF
    Type 1 diabetes (T1D) is characterized by the T cell mediated destruction of the insulin producing β cells. Antigen-specific immunotherapies are used to selectively tolerize β cell-specific pathogenic T cells either directly, or indirectly through the induction of immunoregulatory T cells. A key concern of antigen-specific immunotherapy is exacerbating autoimmunity. We compared the T cell reactivity and efficacy induced by plasmid DNA (pDNA) encoding glutamic acid decarboxylase 65 (GAD65) administered via intramuscular versus gene gun vaccination in NOD mice at a late preclinical stage of T1D. Whereas intramuscular injection of pGAD65 promoted a predominant type 1 CD4+ T cell response and failed to suppress ongoing β cell autoimmunity, gene gun vaccination preferentially induced IL-4 secreting CD4+ T cells and significantly delayed the onset of diabetes. These findings demonstrate that gene gun delivery of autoantigen-encoding pDNA preferentially elicits immunoregulatory T cells and offers a safe, effective mode of pDNA vaccination for the treatment of T1D and other autoimmune diseases
    corecore