45 research outputs found

    Tube fossils from gossanites of the Urals VHMS deposits, Russia: Authigenic mineral assemblages and trace element distributions

    Get PDF
    © 2016The occurrence, types, morphology, and mineralogical characteristics of tube microfossils were studied in gossanites from twelve VHMS deposits of the Urals. Several types of tube microfossils were recognized, including siboglinids, polychaetes and calcerous serpulids, replaced by a variety of minerals (e.g. hematite–quartz, hematite–chlorite, carbonate–hematite) depending on the nature of the substrate prior to the formation of the gossanites. Colonial hematite tube microfossils (~ 150 μm across,1–2 mm long) are composed of hematitic outer and inner walls, and may exhibit a cellular structure within their cavities. Spherical forms are saturated with Fe-oxidizing bacteria inside the tubes – probably analogues of trophosomes. Colloform stromatolitic outer wall surfaces are characterized by the presence of numerous interlaced filaments of hematite (2–3 μm diameter, up to 1–2 mm long). Between tube microfossils, the hematitized cement contains bundles of hematitized filaments with structures similar to the hyphae of fungi. Hematite–chlorite tube microfossils are scattered in gossanites, mostly as biological debris. They are typically 30 to 300 μm in diameter and 1 to 5 mm long. The layered structure of their tube walls is characterized by hematite–quartz and chlorite layers. Abundant filamentous bacteria coated by glycocalix and chlorite stromatolite are associated with hematite–chlorite tubes. The carbonate–hematite tube microfossils (up to 300 μm across, 2–3 mm long) occur in carbonate-rich gossanites. The tubes are characterized by fine (~ 10 μm thick) walls of hematite and cavities dominated by relatively dark carbonate or hematite. Carbonates may be present both in walls and cavities. Stromatolite-like leucoxene or hematite–carbonate aggregates were also found in association with tubes. Randomly oriented filaments are composed of ankerite. Single filaments are composed of individual cells, typically smaller than 100 nm across, similar to that of magnetotactic bacteria. Three dimensional tomographic images of all types of tube microfossils demonstrate a clear wavy microlayering from outer and inner walls, which may reflect segmentation of the tube worms. The traces of burrowing or fragments of glycocalix with relict spheres are typical of tube microfossils from gossanites. The carbon isotopic composition of carbonates associated with tube microfossils from hematite–quartz, hematite–carbonate, and hematite–chlorite gossanites average − 7.2, − 6.8, –22.8‰, PDB, respectively. These values are indicative of a biogenic origin for the carbonates. The oxygen isotopic composition of these carbonates is similar in all three gossanite types averaging + 13.5, + 14.2, + 13.0‰ (relative to SMOW), and indicative of active sulfate reduction during the diagenetic (and anadiagenetic) stages of the sediments evolution. The trace element characteristics of hematite from tube microfossils are characterized by high contents of following trace elements (average, ppm): Mn (1529), As (714), V (540), W (537), Mo (35), and U (5). Such high contents are most likely the result of metal and metalloid sorption by fine particles of precursor iron hydroxides during the oxidation of sulfides and decomposition of hyaloclasts via microbially-mediated reactions

    Zinc on the edge—isotopic and geophysical evidence that cratonic edges control world-class shale-hosted zinc-lead deposits

    Get PDF
    The North Australian Zinc Belt is the largest zinc-lead province in the world, containing three of the ten largest known individual deposits (HYC, Hilton-George Fisher, and Mount Isa). The Northern Cordillera in North America is the second largest zinc-lead province, containing a further two of the world’s top ten deposits (Red Dog and Howards Pass). Despite this world-class endowment, exploration in both mineral provinces during the past 2 decades has not been particularly successful, yielding only two significant discoveries (Teena, Australia, and Boundary, Canada). One of the most important aspects of exploration is to choose mineral provinces and districts within geological belts that have the greatest potential for discovery. Here, we present results from these two zinc belts that highlight previously unused datasets for area selection and targeting. Lead isotope mapping using analyses of mineralized material has identified gradients in μ (238U/204Pb) that coincide closely with many major deposits. Locations of these deposits also coincide with a gradient in the depth of the lithosphere-asthenosphere boundary determined from calibrated surface wave tomography models converted to temperature. Furthermore, gradients in upward-continued gravity anomalies and a step in Moho depth correspond to a pre-existing major crustal boundary in both zinc belts. A spatial association of deposits with a linear mid- to lower-crustal resistivity anomaly from magnetotelluric data is also observed in the North Australian Zinc Belt. The change from thicker to thinner lithosphere is interpreted to localize prospective basins for zinc-lead mineralization and to control the gradient in lead isotope and geophysical data. These data, when combined with data indicative of paleoenvironment and changes in plate motion at the time of mineralization, provide new exploration criteria that can be used to identify prospective mineralized basins and define the most favorable parts of these basins

    Porphyry deposits of the Urals: geological framework and metallogeny

    No full text
    Most of the Cu (± Mo,Au) porphyry and porphyry-related deposits of the Urals are located in the Tagil-Magnitogorsk, East-Uralian Volcanic and Trans-Uralian volcanic arc megaterranes. They are related to subduction zones of different ages: (1) Silurian westward subduction: Cu-porphyry deposits of the Birgilda-Tomino ore cluster (Birgilda, Tomino, and Kalinovskoe) and the Zeleny Dol Cu-porphyry deposit; (2) Devonian Magnitogorsk eastward subduction and the subsequent collision with the East European plate: deposits and occurrences are located in the Tagil (skarn-porphyry Gumeshevskoe etc.) and Magnitogorsk terranes (Cu-porphyry Salavat and Voznesenskoe, Mo-porphyry Verkhne-Uralskoe, Au-porphyry Yubileinoe etc.), and probably in the Alapaevsk-Techa terrane (occurrences of the Alapayevsk-Sukhoy Log cluster); (3) Late-Devonian to Carboniferous subduction: deposits located in the Trans-Uralian megaterrane. This includes Late-Devonian to Early Carboniferous Mikheevskoe Cu-porphyry and Tarutino Cu skarn-porphyry, Carboniferous deposits of the Alexandrov volcanic arc terrane (Bataly, Varvarinskoe) and Early Carboniferous deposits formed dew to eastward subduction under the Kazakh continent (Benkala, etc.).(4) Continent-continent collision in Late Carboniferous produced the Talitsa Mo-porphyry deposit located in the East Uralian megaterrane. Porphyry mineralization of the Magnitogorsk megaterrane shows an evolving relationship from gabbro-diorite and quartz diorite in the Middle Devonian (Gumeshevskoe, Salavat, Voznesenskoe) to granodiorite-plagiogranodiorite in the Late Devonian (Yubileinoe Au-porphyry) and finally to granodiorite in the Carboniferous (Talitsa Mo-porphyry) with a progressive increase in total REE, Rb and Sr contents. This corresponds to the evolution of the Magnitogorsk terrane from a volcanic arc which gave place to an arc-continent collision in the Famennian

    Tube fossils from gossanites of the Urals VHMS deposits, Russia: Authigenic mineral assemblages and trace element distributions

    Get PDF
    © 2016The occurrence, types, morphology, and mineralogical characteristics of tube microfossils were studied in gossanites from twelve VHMS deposits of the Urals. Several types of tube microfossils were recognized, including siboglinids, polychaetes and calcerous serpulids, replaced by a variety of minerals (e.g. hematite–quartz, hematite–chlorite, carbonate–hematite) depending on the nature of the substrate prior to the formation of the gossanites. Colonial hematite tube microfossils (~ 150 μm across,1–2 mm long) are composed of hematitic outer and inner walls, and may exhibit a cellular structure within their cavities. Spherical forms are saturated with Fe-oxidizing bacteria inside the tubes – probably analogues of trophosomes. Colloform stromatolitic outer wall surfaces are characterized by the presence of numerous interlaced filaments of hematite (2–3 μm diameter, up to 1–2 mm long). Between tube microfossils, the hematitized cement contains bundles of hematitized filaments with structures similar to the hyphae of fungi. Hematite–chlorite tube microfossils are scattered in gossanites, mostly as biological debris. They are typically 30 to 300 μm in diameter and 1 to 5 mm long. The layered structure of their tube walls is characterized by hematite–quartz and chlorite layers. Abundant filamentous bacteria coated by glycocalix and chlorite stromatolite are associated with hematite–chlorite tubes. The carbonate–hematite tube microfossils (up to 300 μm across, 2–3 mm long) occur in carbonate-rich gossanites. The tubes are characterized by fine (~ 10 μm thick) walls of hematite and cavities dominated by relatively dark carbonate or hematite. Carbonates may be present both in walls and cavities. Stromatolite-like leucoxene or hematite–carbonate aggregates were also found in association with tubes. Randomly oriented filaments are composed of ankerite. Single filaments are composed of individual cells, typically smaller than 100 nm across, similar to that of magnetotactic bacteria. Three dimensional tomographic images of all types of tube microfossils demonstrate a clear wavy microlayering from outer and inner walls, which may reflect segmentation of the tube worms. The traces of burrowing or fragments of glycocalix with relict spheres are typical of tube microfossils from gossanites. The carbon isotopic composition of carbonates associated with tube microfossils from hematite–quartz, hematite–carbonate, and hematite–chlorite gossanites average − 7.2, − 6.8, –22.8‰, PDB, respectively. These values are indicative of a biogenic origin for the carbonates. The oxygen isotopic composition of these carbonates is similar in all three gossanite types averaging + 13.5, + 14.2, + 13.0‰ (relative to SMOW), and indicative of active sulfate reduction during the diagenetic (and anadiagenetic) stages of the sediments evolution. The trace element characteristics of hematite from tube microfossils are characterized by high contents of following trace elements (average, ppm): Mn (1529), As (714), V (540), W (537), Mo (35), and U (5). Such high contents are most likely the result of metal and metalloid sorption by fine particles of precursor iron hydroxides during the oxidation of sulfides and decomposition of hyaloclasts via microbially-mediated reactions

    Tube fossils from gossanites of the Urals VHMS deposits, Russia: Authigenic mineral assemblages and trace element distributions

    No full text
    © 2016The occurrence, types, morphology, and mineralogical characteristics of tube microfossils were studied in gossanites from twelve VHMS deposits of the Urals. Several types of tube microfossils were recognized, including siboglinids, polychaetes and calcerous serpulids, replaced by a variety of minerals (e.g. hematite–quartz, hematite–chlorite, carbonate–hematite) depending on the nature of the substrate prior to the formation of the gossanites. Colonial hematite tube microfossils (~ 150 μm across,1–2 mm long) are composed of hematitic outer and inner walls, and may exhibit a cellular structure within their cavities. Spherical forms are saturated with Fe-oxidizing bacteria inside the tubes – probably analogues of trophosomes. Colloform stromatolitic outer wall surfaces are characterized by the presence of numerous interlaced filaments of hematite (2–3 μm diameter, up to 1–2 mm long). Between tube microfossils, the hematitized cement contains bundles of hematitized filaments with structures similar to the hyphae of fungi. Hematite–chlorite tube microfossils are scattered in gossanites, mostly as biological debris. They are typically 30 to 300 μm in diameter and 1 to 5 mm long. The layered structure of their tube walls is characterized by hematite–quartz and chlorite layers. Abundant filamentous bacteria coated by glycocalix and chlorite stromatolite are associated with hematite–chlorite tubes. The carbonate–hematite tube microfossils (up to 300 μm across, 2–3 mm long) occur in carbonate-rich gossanites. The tubes are characterized by fine (~ 10 μm thick) walls of hematite and cavities dominated by relatively dark carbonate or hematite. Carbonates may be present both in walls and cavities. Stromatolite-like leucoxene or hematite–carbonate aggregates were also found in association with tubes. Randomly oriented filaments are composed of ankerite. Single filaments are composed of individual cells, typically smaller than 100 nm across, similar to that of magnetotactic bacteria. Three dimensional tomographic images of all types of tube microfossils demonstrate a clear wavy microlayering from outer and inner walls, which may reflect segmentation of the tube worms. The traces of burrowing or fragments of glycocalix with relict spheres are typical of tube microfossils from gossanites. The carbon isotopic composition of carbonates associated with tube microfossils from hematite–quartz, hematite–carbonate, and hematite–chlorite gossanites average − 7.2, − 6.8, –22.8‰, PDB, respectively. These values are indicative of a biogenic origin for the carbonates. The oxygen isotopic composition of these carbonates is similar in all three gossanite types averaging + 13.5, + 14.2, + 13.0‰ (relative to SMOW), and indicative of active sulfate reduction during the diagenetic (and anadiagenetic) stages of the sediments evolution. The trace element characteristics of hematite from tube microfossils are characterized by high contents of following trace elements (average, ppm): Mn (1529), As (714), V (540), W (537), Mo (35), and U (5). Such high contents are most likely the result of metal and metalloid sorption by fine particles of precursor iron hydroxides during the oxidation of sulfides and decomposition of hyaloclasts via microbially-mediated reactions

    Tube fossils from gossanites of the Urals VHMS deposits, Russia: Authigenic mineral assemblages and trace element distributions

    No full text
    © 2016The occurrence, types, morphology, and mineralogical characteristics of tube microfossils were studied in gossanites from twelve VHMS deposits of the Urals. Several types of tube microfossils were recognized, including siboglinids, polychaetes and calcerous serpulids, replaced by a variety of minerals (e.g. hematite–quartz, hematite–chlorite, carbonate–hematite) depending on the nature of the substrate prior to the formation of the gossanites. Colonial hematite tube microfossils (~ 150 μm across,1–2 mm long) are composed of hematitic outer and inner walls, and may exhibit a cellular structure within their cavities. Spherical forms are saturated with Fe-oxidizing bacteria inside the tubes – probably analogues of trophosomes. Colloform stromatolitic outer wall surfaces are characterized by the presence of numerous interlaced filaments of hematite (2–3 μm diameter, up to 1–2 mm long). Between tube microfossils, the hematitized cement contains bundles of hematitized filaments with structures similar to the hyphae of fungi. Hematite–chlorite tube microfossils are scattered in gossanites, mostly as biological debris. They are typically 30 to 300 μm in diameter and 1 to 5 mm long. The layered structure of their tube walls is characterized by hematite–quartz and chlorite layers. Abundant filamentous bacteria coated by glycocalix and chlorite stromatolite are associated with hematite–chlorite tubes. The carbonate–hematite tube microfossils (up to 300 μm across, 2–3 mm long) occur in carbonate-rich gossanites. The tubes are characterized by fine (~ 10 μm thick) walls of hematite and cavities dominated by relatively dark carbonate or hematite. Carbonates may be present both in walls and cavities. Stromatolite-like leucoxene or hematite–carbonate aggregates were also found in association with tubes. Randomly oriented filaments are composed of ankerite. Single filaments are composed of individual cells, typically smaller than 100 nm across, similar to that of magnetotactic bacteria. Three dimensional tomographic images of all types of tube microfossils demonstrate a clear wavy microlayering from outer and inner walls, which may reflect segmentation of the tube worms. The traces of burrowing or fragments of glycocalix with relict spheres are typical of tube microfossils from gossanites. The carbon isotopic composition of carbonates associated with tube microfossils from hematite–quartz, hematite–carbonate, and hematite–chlorite gossanites average − 7.2, − 6.8, –22.8‰, PDB, respectively. These values are indicative of a biogenic origin for the carbonates. The oxygen isotopic composition of these carbonates is similar in all three gossanite types averaging + 13.5, + 14.2, + 13.0‰ (relative to SMOW), and indicative of active sulfate reduction during the diagenetic (and anadiagenetic) stages of the sediments evolution. The trace element characteristics of hematite from tube microfossils are characterized by high contents of following trace elements (average, ppm): Mn (1529), As (714), V (540), W (537), Mo (35), and U (5). Such high contents are most likely the result of metal and metalloid sorption by fine particles of precursor iron hydroxides during the oxidation of sulfides and decomposition of hyaloclasts via microbially-mediated reactions

    Tube fossils from gossanites of the Urals VHMS deposits, Russia: Authigenic mineral assemblages and trace element distributions

    No full text
    The occurrence, types, morphology, and mineralogical characteristics of tube microfossils were studied in gossanites from twelve VHMS deposits of the Urals. Several types of tube microfossils were recognized, including siboglinids, polychaetes and calcerous serpulids, replaced by a variety of minerals (e.g. hematite-quartz, hematite-chlorite, carbonate-hematite) depending on the nature of the substrate prior to the formation of the gossanites. Colonial hematite tube microfossils (~. 150. µm across,1-2. mm long) are composed of hematitic outer and inner walls, and may exhibit a cellular structure within their cavities. Spherical forms are saturated with Fe-oxidizing bacteria inside the tubes - probably analogues of trophosomes. Colloform stromatolitic outer wall surfaces are characterized by the presence of numerous interlaced filaments of hematite (2-3. µm diameter, up to 1-2. mm long). Between tube microfossils, the hematitized cement contains bundles of hematitized filaments with structures similar to the hyphae of fungi. Hematite-chlorite tube microfossils are scattered in gossanites, mostly as biological debris. They are typically 30 to 300. µm in diameter and 1 to 5. mm long. The layered structure of their tube walls is characterized by hematite-quartz and chlorite layers. Abundant filamentous bacteria coated by glycocalix and chlorite stromatolite are associated with hematite-chlorite tubes. The carbonate-hematite tube microfossils (up to 300. µm across, 2-3. mm long) occur in carbonate-rich gossanites. The tubes are characterized by fine (~. 10. µm thick) walls of hematite and cavities dominated by relatively dark carbonate or hematite. Carbonates may be present both in walls and cavities. Stromatolite-like leucoxene or hematite-carbonate aggregates were also found in association with tubes. Randomly oriented filaments are composed of ankerite. Single filaments are composed of individual cells, typically smaller than 100. nm across, similar to that of magnetotactic bacteria.Three dimensional tomographic images of all types of tube microfossils demonstrate a clear wavy microlayering from outer and inner walls, which may reflect segmentation of the tube worms. The traces of burrowing or fragments of glycocalix with relict spheres are typical of tube microfossils from gossanites.The carbon isotopic composition of carbonates associated with tube microfossils from hematite-quartz, hematite-carbonate, and hematite-chlorite gossanites average. -7.2, - 6.8, -22.8‰, PDB, respectively. These values are indicative of a biogenic origin for the carbonates. The oxygen isotopic composition of these carbonates is similar in all three gossanite types averaging +. 13.5, +. 14.2, +. 13.0‰ (relative to SMOW), and indicative of active sulfate reduction during the diagenetic (and anadiagenetic) stages of the sediments evolution. The trace element characteristics of hematite from tube microfossils are characterized by high contents of following trace elements (average, ppm): Mn (1529), As (714), V (540), W (537), Mo (35), and U (5). Such high contents are most likely the result of metal and metalloid sorption by fine particles of precursor iron hydroxides during the oxidation of sulfides and decomposition of hyaloclasts via microbially-mediated reactions
    corecore