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Abstract 36 

Economic volcanic-hosted massive sulfide (VHMS) deposits of the Archaean Yilgarn Craton 37 

of Western Australia are restricted to zones of juvenile crust as revealed through regional Nd, 38 

Pb and Hf isotopic variations and the geochemistry of felsic volcanic rocks. Interpreted as 39 

Archaean paleo-rift zones, one of these runs N-S through the Eastern Goldfields Superterrane 40 

(broadly coincident with the Kurnalpi Terrane) and is associated with the high grade ca. 2690 41 

Ma Teutonic Bore, Jaguar and Bentley deposits, plus sub-economic VHMS mineralization 42 

further south. To date, only small historic Cu occurrences (e.g. Anaconda) and barren pyritic 43 

lenses have been recognised in the older >2.7 Ga plume-dominated lower stratigraphy of the 44 

Eastern Goldfields Superterrane.  45 

The Nimbus Ag-Zn-(Au) deposit (12.1 Mt at 52 g/t Ag, 0.9% Zn and 0.2g/t Au) is 46 

located approximately 10 km east of Kalgoorlie, near the margin of the Kurnalpi Terrane. Its 47 

origin has been contentious for a number of years, with previous models favouring 48 

seafloor/sub-seafloor VHMS mineralization or a high sulfidation fault-hosted system. We 49 

present a detailed account of the deposit, its host stratigraphy and associated hydrothermal 50 

alteration, plus two new SHRIMP U-Pb zircon ages, Pb isotope (galena), and O isotope (zircon) 51 

constraints. Compared to other VHMS occurrences in the Yilgarn Craton, the Nimbus deposit 52 

is unusual in terms of its tectono-stratigraphic position, the geochemistry of its host sequence 53 

(i.e. FI-affinity felsic volcanic rocks, ocean-plateau-like low-Th basalts), mineralogy (e.g. 54 

abundance of Ag-Sb-Pb-As bearing sulfosalts, high Hg, low Cu) and quartz-carbonate-sericite 55 

dominated alteration assemblages. Classification of Nimbus as a shallow water and low 56 

temperature VHMS deposit with epithermal characteristics (i.e. a hybrid bimodal-felsic 57 

deposit) is consistent with its position near the margin of the Kurnalpi paleo-rift zone and 58 

radiogenic  (238U/204Pb) values. The recognition that the Nimbus deposit is associated with c. 59 



2705 Ma plume magmatism opens new areas for VHMS exploration in the Eastern Goldfields 60 

Superterrane over a strike length exceeding 500 km.  61 

 62 

 63 

  64 



1. Introduction 65 

Despite isolated successes in the 1970s, such as the discovery of significant orebodies at 66 

Golden Grove and Teutonic Bore, exploration for volcanic-hosted massive sulfide (VHMS) 67 

mineralization waned through most of the 1980s and 1990s in the Archaean Yilgarn Craton 68 

of Western Australia (Yeats, 2007). Although renewed exploration activity during the past 69 

decade has identified several new resources (e.g. Bentley, Just Desserts, Hollandaire), only a 70 

handful of deposits have been brought into production (Hollis et al., 2015; Fig. 1). Exploration 71 

challenges associated with regolith and deep cover exacerbate the already difficult task of 72 

exploring for small, deformed deposits in stratigraphically complex volcanic terranes. 73 

However, understanding the tectono-stratigraphic relationships of VHMS deposits in 74 

greenstone sequences greatly improves the effectiveness of mineral exploration (e.g. Belford 75 

et al., 2015; Hayman et al., 2015a; Duuring et al., 2016).  76 

Significant VHMS resources of the Yilgarn Craton are largely restricted to two main 77 

zones of juvenile crust, as revealed through regional Nd, Pb and Hf isotopic variations (Ivanic 78 

et al., 2012; Huston et al., 2014; Mole et al., 2013, 2014; Fig. 2) and the geochemistry of felsic 79 

volcanic rocks (e.g. Brown et al., 2002; Barley et al., 2008; Hollis et al., 2015, in press). 80 

Interpreted as an Archaean paleo-rift zone that was reactivated several times, the Cue Zone of 81 

the northern Youanmi Terrane (Huston et al., 2014; Fig. 2a) is associated with at least three 82 

episodes of VHMS mineralization (reviewed in Hollis et al., 2015):  83 

(i) an initial stage, dated from ca. 2980 Ma to ca. 2930 Ma, in bimodal to dominantly felsic 84 

greenstone belts (e.g. Mt. Gibson, Golden Grove, Weld Range: Yeats & Groves, 1998; 85 

Sharpe & Gemmell, 2002; Guilliamse, 2014);  86 

(ii) at ca. 2815 Ma, during the eruption of the plume-related Norie Group and coeval with 87 

the emplacement of at least five large igneous complexes at shallow levels in the crust 88 



(e.g. Austin-Quinns, Just Desserts: Ivanic et al., 2010; Hassan, 2014; Duuring et al., 89 

2016);  90 

(iii) from ca. 2760 to ca. 2745 Ma during the deposition of the Greensleeves Formation (e.g. 91 

Hollandaire, Dalgaranga, Mt. Mulcahy: Hayman et al., 2015a).  92 

An additional VHMS event in the northeast Youanmi Terrane at ca. 2725 Ma appears to be 93 

restricted to the Gum Creek greenstone belt (Hollis et al., 2015, in press). This age is coincident 94 

with Yalgowra Suite mafic magmatic event (Ivanic et al., 2010), rift development further west 95 

in the Glen Group (Van Kranendonk et al., 2013) and Marda Complex, and the onset of plume 96 

magmatism in the Eastern Goldfields Superterrane (Hayman et al., 2015b). 97 

A second Archaean paleo-rift zone in the Yilgarn Craton runs N-S through the Kurnalpi 98 

Terrane in the Eastern Goldfields Superterrane (Huston et al., 2014), which is the focus of this 99 

paper. The relationship between this area of juvenile crust and Cu-Zn mineralization is evident 100 

in Figure 2, with significant resources mined around Teutonic Bore (Hallberg & Thompson, 101 

1981; Huston et al., 2014; Belford et al., 2015) and smaller base metal occurrences further 102 

south (e.g. Jungle Pool, King/Erayinia) (Hollis et al., 2015). The ca. 2692 Ma Teutonic Bore 103 

Volcanic Complex hosts the high-grade Teutonic Bore, Jaguar and Bentley deposits. Mineral 104 

occurrences at Tuff Hill, Mason Hill and Fisher Well to the northeast (Fig. 2) occur in the 105 

Burtville Terrane (Ferguson, 1999) which has a similar age and stratigraphy to the Youanmi 106 

Terrane (Pawley et al., 2012).  107 

The Nimbus Ag-Zn-(Au) deposit (12.1 Mt at 52 g/t Ag, 0.9% Zn and 0.2g/t Au) is 108 

located approximately 265 km south of Teutonic Bore and 10 km east of Kalgoorlie, near the 109 

mapped boundary between the Kalgoorlie and Kurnalpi terranes (Fig. 1). Its origin has been 110 

debated for a number of years, with previous workers favouring either seafloor/sub-seafloor 111 

VHMS mineralization (e.g. Mulholland et al., 1998; Doyle, 1998; Belford, 2011), or a fault-112 

hosted high-sulfidation system (Henderson et al., 2012). Its Ag-rich nature is unique in the 113 



Yilgarn Craton. We present a detailed account of the deposit, including new constraints on its 114 

age, mineralogy, geochemistry, host stratigraphy, tectonic setting, and the style of 115 

hydrothermal alteration. Implications for VHMS exploration in the Eastern Goldfields are 116 

discussed. 117 

 118 

2. Regional geology 119 

The geology of the Yilgarn Craton with respect to VHMS mineralization has recently been 120 

reviewed by Hollis et al. (2015). Here we focus on the stratigraphy of the western half of the 121 

Eastern Goldfields Superterrane - the Kalgoorlie and Kurnalpi terranes (Fig. 1). 122 

The geology of the Kalgoorlie Terrane is broadly divisible into the lower 2720-2690 123 

Ma mafic-ultramafic Kambalda Sequence (Beresford et al., 2005) and the overlying 2690-2660 124 

Ma Kalgoorlie Sequence (Krapež & Hand, 2008) (Fig. 3a). At least two cycles of plume related 125 

magmatism have recently been recognized in the lower mafic-ultramafic sequence (Hayman et 126 

al., 2015b; Fig. 3b). Cycle 1 lasted from ca. 2720 to 2705 Ma and was restricted to the western 127 

half of the Kalgoorlie Terrane (i.e. Agnew, Ora Banda and Coolgardie: Hayman et al., 2015b; 128 

Fig. 3b). This event was contemporaneous with komatiitic magmatism in the Wattagee 129 

Formation of the Youanmi Terrane (Fig. 1; Van Kranendonk et al., 2013) and the emplacement 130 

of the mafic Yalgowra Suite throughout the Cue Zone (Fig. 2; Ivanic et al., 2010). Cycle 2 131 

magmatism was a regional event across the Kalgoorlie Terrane and lasted from ca. 2705 to 132 

2690 Ma (Hayman et al., 2015b; Fig. 3b). Plume-related komatiitic cumulate bodies host 133 

world-class Ni resources such as Mt. Keith and the Kambalda camp, and are interpreted to be 134 

the products of high-flux komatiite volcanism focused along the eastern margin of the Youanmi 135 

Terrane (Barnes, 2006; Barnes & Fiorentini, 2012; Mole et al., 2014). Overlying mafic rocks 136 

of each cycle were derived from the extensive crystal fractionation and crustal contamination 137 



of plume derived magmas in mid-crustal magma chambers (Barnes et al., 2012; Hayman et al., 138 

2015b). The 2690-2660 Ma Kalgoorlie Sequence comprises a >3 km thick package of 139 

volcaniclastic rocks, felsic to intermediate volcanic rocks, and mafic intrusive complexes with 140 

minor mafic volcanic rocks (Squire et al., 2010; Fig. 3a). Most volcaniclastic rocks of the 141 

Kalgoorlie Sequence formed by deposition from turbidity currents (Krapež & Hand, 2008). 142 

Late doming and extension associated with the emplacement of a widespread high-Ca tonalite-143 

trondjhemite-granodiorite (TTG) suite produced the late quartz-dominated clastic basins 144 

(Wyche et al., 2013; Fig. 3a). 145 

Broadly coeval with the Kambalda Sequence of the Kalgoorlie Terrane, the Kurnalpi 146 

and Minerie sequences of the Kurnalpi Terrane are represented by a more intermediate package 147 

of rocks (Fig. 3a). Although some workers have attributed the Kurnalpi andesites to an 148 

Archaean arc (e.g. Barley et al., 2008; Czarnota et al., 2010), they are also geochemically 149 

consistent with the fractionation of plume-related tholeiitic basalts, coupled with their 150 

contamination by contemporaneous partial melts of preexisting continental crust (Barnes & 151 

Van Kranendonk, 2014; see Discussion). Compared to modern island arc andesites these rocks 152 

contain unusually high concentrations of MgO, Ni and Cr (Barnes & Van Kranendonk, 2014). 153 

Between 2692 and 2680 Ma, volcanic centres in the Kurnalpi Terrane (Gindalbie Domain and 154 

further south; Fig. 1) are associated with largely bimodal (basalt-rhyolite) volcanic and 155 

associated sedimentary rocks, although some contain significant volumes of andesites (Fig. 156 

3a). The felsic rocks are significantly enriched in the high field strength elements (HFSE) and 157 

heavy rare earth elements (HREE) (Brown et al., 2002; Barley et al., 2008; Hollis et al., 2015), 158 

diagnostic of shallow crustal melting (Lesher et al., 1986; Piercey et al., 2001; Hart et al., 2004). 159 

Significant VHMS resources occur around Teutonic Bore, with geochemically similar felsic 160 

volcanic rocks identified throughout the Kurnalpi Terrane (e.g. Bore Well, Melita: Hollis et al., 161 

in press).  162 



The Ag-Zn-(Au) Nimbus deposit lies in the Boorara Domain of the Kalgoorlie Terrane 163 

(Cassidy et al., 2006), in a package of rocks bound to the west and east by the Boorara and 164 

Kanowna shear zones (Fig. 4). The regional geology of the Boorara Domain is similar to that 165 

elsewhere in eastern half of the Kalgoorlie Terrane (Swager, 1997; Trofimovs et al., 2004, 166 

2006; Fiorentini et al., 2010). Regional correlations for the stratigraphy around Black Swan (in 167 

the southern part of the domain) and Mount Keith (to the north) are presented in Figure 3b. In 168 

both areas komatiites were erupted contemporaneously with dacite, with clear evidence for 169 

magma mingling (Rosengren et al., 2008; Cas et al., 2013; Barnes & Van Kranendonk, 2014). 170 

No stratigraphy has been published for the Nimbus area and it was previously (incorrectly) 171 

believed that the local stratigraphy formed part of the Black Flag Group due to similarities in 172 

lithology (Fig. 3a). 173 

 174 

3. Stratigraphy 175 

Although hydrothermal alteration, tectonic deformation and deep weathering obscure 176 

much of the primary mineralogy at Nimbus, relict volcanic textures are well preserved in 177 

diamond drillcore, and in saprolite of the Discovery and East pit walls. Mineralization occurs 178 

in a NW (to NNW) trending and steeply-dipping, bimodal-felsic package of volcanic rocks 179 

(quartz-feldspar-phyric dacite and lesser basalt, plus their autoclastic equivalents) with 180 

subordinate black carbonaceous mudstone, tuffaceous volcaniclastic sandstone, polymict 181 

conglomerates and volcanic breccias. The local stratigraphy is dominated by rocks of dacitic 182 

composition (Fig. 5a). Spinifex textured komatiite flows, volcanic sandstones/siltstones, 183 

polymict volcanic breccias, carbonaceous mudstone, dolerite and basalt were intersected in 184 

distal drillhole BODH015 (Fig. 4).  All rocks described here have been subjected to lower 185 

greenschist facies metamorphism. A more detailed account of the Nimbus stratigraphy to that 186 



detailed below (including comprehensive facies logging) will be presented elsewhere by 187 

Hildrew et al. (in prep; based on Hildrew, 2015). 188 

Facing: Debate continues on whether the Nimbus stratigraphy youngs to the NE or SW, due 189 

to a lack of diagnostic way-up indicators. Only in drillholes NBDH010 (Fig. 5a) and BODH015 190 

have unequivocal younging directions been observed by the authors (Fig. 6a-c). In drillhole 191 

BODH015, ~1 km SW of the deposit, a fold axis is clear in the core, with several >2 m thick 192 

graded beds in the top half younging up hole (Fig. 6b). In the lower half of the core, flame 193 

structures, cross-bedding (Fig. 6c), erosional bases and grading indicate this part of the 194 

sequence is overturned. 195 

Evidence for a SW younging direction is restricted to drillhole NBDH010 (Fig. 5a), 196 

where a thin (5 cm) of grading in a turbidite interbedded with black mudstone (Fig. 6a) forms 197 

one of several narrow bands of sediment in a 275 m thick sequence of mafic rocks (the 198 

Northeast basalt: Fig. 4). Mafic rocks either side of the graded bedding display distinct 199 

immobile element ratios (e.g. Zr/Cr, Cr/Al at ~204m; see Fig. 7) suggesting that they represent 200 

separate units and not a folded sequence. By contrast, evidence for a NE younging direction 201 

was presented by Doyle (1998) from hole SHD002. Normal grading with mudstone, intraclasts 202 

of mudstone, and crystal-rich bases were taken as evidence that the sequence faces NE (Doyle, 203 

1998). Other less robust evidence favouring a model whereby the stratigraphy youngs to the 204 

NE, includes: (i) an increased concentration of Cu-Au to the SW in the deposit (as Cu is more 205 

common in the feeder zones of VHMS systems; Franklin et al., 2005), and (ii) that the polymict 206 

conglomerates to the NE contain clasts of variably hydrothermally-altered dacite and are only 207 

themselves weakly mineralized.  Due to the unclear facing, we refer to the current geographic 208 

position of the units, rather than their stratigraphic position. 209 



Local stratigraphy: Immediately NE of the Nimbus deposit, a thick sequence of dacitic 210 

volcaniclastic sandstones, volcanic breccias and polymict conglomerates have been 211 

recognised. These units are best observed in the top of drillhole NBDH010 (Fig. 4) where the 212 

former two lithologies are preserved as saprolite and saprock. The polymict conglomerates 213 

(>125m thick in hole NBDH010) are composed of rounded to sub-angular dacite clasts and 214 

angular fragments of carbonaceous mudstone in a poorly sorted matrix of varying dacitic to 215 

graphitic composition (Figs. 6d-e). Dacite clasts are dense, non-vesicular and show various 216 

degrees of crystallinity and hydrothermal alteration. At least five broad pulses of sedimentation 217 

have been identified, through systematic variations in the composition of the dominant clast 218 

type, matrix, and maximum clast size with depth. These pulses coincide with shifts in immobile 219 

element profiles (e.g. Sc/V, V/Al, Zr/Y; see Fig. 7). The polymict conglomerates are interpreted 220 

to represent pulsing debris flow units from a subaerial shoreline into a deeper anoxic basin (as 221 

described by Hildrew, 2015). The overall massive and poorly sorted character indicates 222 

deposition from mass flow processes. The rounded character of clasts requires a sub-aerial 223 

environment (beach or fluvial setting), such as for an emergent dome/stratovolcano.  224 

Large thicknesses of intensely hydrothermally-altered quartz-feldspar porphyritic 225 

dacite dominate the Nimbus stratigraphy. Due to the intense hydrothermal alteration 226 

throughout the coherent dacite facies (Fig. 6f) it is unclear if the thick drill intercepts are 227 

composed of one or more flows/domes/intrusions. Individual units cannot be distinguished 228 

geochemically using immobile element ratios (see Geochemistry). Along the margin of dacite 229 

units, monomict, dominantly clast-supported blocky breccias, interpreted to be hyaloclastite 230 

(Fig. 6g), often grade into jigsaw-fit breccias. Sharp edges and blocky to curviplanar fragments 231 

(e.g. NBDH035; Fig. 6h) are indicative of quench fragmentation (described in Hildrew et al., 232 

in prep). In addition, the dacite units may be pervasively hydraulically fractured. Both of these 233 

lithologies (quench fragmented and hydraulically fractured dacite breccias) are often intensely 234 



mineralized and altered, with fractures providing suitable pathways for hydrothermal fluids 235 

(e.g. Cas et al., 2011; see Discussion). In some drillholes carbonaceous mudstone has infiltrated 236 

the matrix to these breccias, indicating peperite origins (Doyle, 1998; Belford, 2011).   237 

Mafic rocks are largely absent under the Discovery Pit, but occur in and under the East 238 

Pit with several units observed to date (referred to as the Northeast, East Pit, Au150, Western 239 

and Office basalts; Fig. 4). These rocks represent the ‘andesites’ of earlier workers that were 240 

suggested to be intrusive (Doyle, 1998; Belford, 2011). Conventional whole rock geochemistry 241 

of drillcore presented here demonstrate these rocks are mafic in composition (e.g. Pearce, 1996; 242 

Hastie et al., 2007). These rocks are fine-grained, variably plagioclase-phyric and have been 243 

subjected to variably intense quartz-albite-carbonate-chlorite alteration, accompanied by 244 

networks of hydraulic fractures. Peperitic upper and lower contacts for mafic rocks with 245 

carbonaceous mudstone were observed in several drillholes (e.g. NBDH010; Fig. 6i), suggest 246 

they represent very shallow, syn-depositional invasive flows or perhaps more likely, sills. 247 

Abundant hyaloclastite (Fig. 6j) and varioles (Fig. 6k) are indicative of magma-water 248 

interaction and an originally glass groundmass respectively. No definitive examples of pillow 249 

lavas were observed, except possibly at the top of hole BOD202 (Western basalt) which is also 250 

associated with a polymict mafic breccia (Fig. 6l).  251 

Thin (~1 m thick) beds of black carbonaceous mudstone (variably pyritic and often 252 

intensely silicified; Fig. 6m) occur throughout the Nimbus stratigraphy - most often in the 253 

uppermost levels. This rock type represents ambient background sedimentation, indicative of 254 

an anoxic environment below storm wave base. Intercalated sandstone units were suggested by 255 

Doyle (1998) to form via low-density turbidity currents.   256 

Distal stratigraphy: In regional exploration drillhole BODH015, approximately 1km SW 257 

from Nimbus, a folded sequence of basalt, Au-bearing dolerite, polymict volcanic breccias 258 



(Fig. 6n), spinifex-textured komatiite flows (Fig. 6o-p), carbonaceous mudstone, and a mixed 259 

sequence of volcanic siltstones and sandstones was intersected. Further detail and their genetic 260 

implications for depositional environment is provided by Hildrew et al. (in prep). 261 

4. Mineralization 262 

The Ag-Zn-(Au) Nimbus deposit includes multiple lenses of primary sulfide 263 

mineralization, and overlying zones of oxide and supergene mineralization. Between 2003 and 264 

2006, deeply weathered oxide and supergene (‘transition’) material was mined by Polymetals 265 

WA from two small open pits (Discovery and East) for a total production of 0.32 Mt at 352 g/t 266 

Ag (including 6.5t Hg; described in Mulholland et al., 1998). The Nimbus resource of primary 267 

sulfide mineralization (Fig. 5a) currently stands at 12.1 Mt at 52 g/t Ag, 0.9 % Zn and 0.2 g/t 268 

Au (including measured, indicated and inferred resources; April, 2015). Several lodes of high 269 

grade silver-zinc (1.22 Mt at 175g/t Ag and 3.5% Zn) and anomalous gold (2.45 Mt at 0.8 g/t 270 

Au) mineralization have been identified. The mineralogy of the deposit has been partially 271 

described in a number of unpublished company/consultancy reports (Townend, 1996; 272 

Mulholland et al., 1998; Doyle 1998; Powell, 1999; McArthur, 2006; Marjoribanks, 2012; 273 

Crawford, 2012, McArthur, 2012). This information is compiled and expanded upon here.  A 274 

short summary is provided below, with additional detail in Supplementary Information. 275 

Primary Ag-Zn sulfide mineralization at Nimbus occurs as a series of stacked, steeply 276 

plunging and subparallel lenses (Fig. 5). Several units of early well-developed massive pyrite 277 

(Fig. 8a), typically 2 to 7m thick, have clearly replaced glassy quartz-plagioclase phyric dacite, 278 

as recognized by a number of earlier workers (Doyle, 1999; Belford, 2011; Crawford 2012). In 279 

some drillholes multiple horizons of massive pyrite are present with discordant zones of 280 

stringer pyrite and sphalerite occurring between these in a coherent dacite facies. Although a 281 

number of earlier workers described the pyrite as colloform in nature this term is not strictly 282 



correct, as the Nimbus massive pyrite occurs through replacement and not through precipitation 283 

in open space. Underlying these lenses of barren massive pyrite, polymetallic sulfide 284 

mineralization typically occurs as: 1) semi-massive (Fig. 8e), stringer and breccia-type Ag-285 

Zn±Pb-(Cu-Au) sulfides (Figs. 8f-g) associated with monomict dacite breccia (which may have 286 

focussed hydrothermal fluids – see Discussion); and 2) as discordant stringer and disseminated 287 

sphalerite-pyrite in coherent dacite (Figs. 8h-l).   288 

Where well preserved, the early ‘colloform’ pyrite occurs with radial fibrous and 289 

concentrically banded textures with interstitial quartz and/or carbon (Doyle, 1998). The latter 290 

was subsequently fragmented at all scales by quartz-pyrite due to hydraulic brecciation, with 291 

repeated crack-seal events recognized by Crawford (2012). Following this, all phases were 292 

brecciated and replaced by straw-yellow Fe-poor sphalerite. This early sphalerite can contain 293 

rare flecks of chalcopyrite, galena and/or rare arsenopyrite (in order of decreasing abundance).  294 

Although, galena is typically younger than low-Fe sphalerite (brecciating and replacing both 295 

low-Fe sphalerite and all early pyrite phases), both are also frequently intergrown. When 296 

present in significant quantities galena is also intergrown with a diverse suite of Ag-Sb-Pb-As-297 

(Cu) sulfosalts (the main ore phase), such as (in order of decreasing abundance): boulangerite 298 

[Pb5Sb4S11], pyrargyrite [Ag3SbS3], Ag-bearing tetrahedrite [(Cu,Fe,Zn,Ag)12Sb4S13], marrite 299 

[AgPbAsS3], bournonite [PbCuSbS3], and rare owyheeite [Pb7Ag2(Sb,Bi)8S20] (e.g. Townend, 300 

1996; Crossley, 2011; Crawford, 2012). McArthur (2006, 2012) identified covellite [CuS], and 301 

sulfosalts enargite [Cu3AsS4] (associated with chalcopyrite) and freibergite 302 

[(Ag,Cu,Fe)12(As,Sb)4S13] from rock chips in holes NBRC202 and NBRC203 (samples 303 

represented by blue bars in Fig. 5a). Coarser patches of a younger generation of chalcopyrite 304 

are also associated with the high-grade Ag-Pb-Zn main ore phase. Fe-rich sphalerite always 305 

appears to be younger than the low-Fe phase, and appears to have precipitated with galena and 306 



the various sulfosalt minerals during the main ore phase - though in some instances post-dates 307 

it.  308 

Mafic rocks at Nimbus are typically weakly mineralized, containing only minor 309 

amounts of disseminated pyrite and low-Fe sphalerite, and very rarely trace chalcopyrite. 310 

Recent RAB drilling intercepted Au-rich mineralization in the Au150 basalt (NBRC167: e.g. 311 

10 m at 4.1 g/t Au) with rock chips containing abundant pyrite, sphalerite and galena.  312 

 313 

5. Hydrothermal alteration  314 

Hydrothermal alteration at Nimbus is dominated by the extensive quartz-sericite±carbonate 315 

alteration of dacite and quartz-carbonate-chlorite alteration of mafic rocks. Representative 316 

photographs from drillcore are shown in Figure 9, with thin section photomicrographs 317 

presented in Supplementary Figure 1.  318 

Coherent dacitic rocks at Nimbus comprise a broadly even distribution of quartz and 319 

plagioclase phenocrysts in a finely crystalline matrix. Phenocrysts may be fractured and broken 320 

(particularly quartz) and variably replaced by a combination of quartz, sericite, carbonate and 321 

minor chlorite. The groundmass is typically foliated and altered by a combination of quartz, 322 

sericite/muscovite, carbonate, chlorite and albite, with minor fuchsite, epidote, and carbon 323 

(discounting the regolith zone). Trace amounts of rutile, zircon and tourmaline also occur. 324 

Hydrothermal alteration is most intense surrounding sulfide mineralization. Well preserved 325 

volcanic textures occur distal to mineralization, where albite is increasingly common (Doyle, 326 

1998).  Rare arcuate and concentric shapes described by Doyle (1998) are consistent with 327 

perlite (i.e. a formerly glassy matrix). Albite is present in minor amounts throughout the host 328 

dacite, but is most abundant outside the main zone of quartz-sericite alteration (Doyle, 1998).   329 



Where observed in drillcore, contacts between intensely silicified, sericitized and 330 

carbonate-altered dacitic rocks are often sharp, confirmed by sudden shifts in pXRF and whole 331 

rock geochemical K2O and CaO contents (see Fig. 7). According to Doyle (1998) the sericite-332 

carbonate altered zones enclose sericite-quartz alteration, with both alteration assemblages 333 

forming prior to the later sericite-carbonate-chlorite-fuchsite phase. Intense chloritization of 334 

dacite is predominantly restricted to narrow zones (Fig. 9e) and contacts with mafic rocks (Fig. 335 

9g). In the pervasive chlorite zones, phenocrysts are barely visible. Near contacts with mafic 336 

rocks, anatomising networks of fuchsite-sericite-carbonate veinlets together with silicification 337 

produce pseudobreccia textures over tens of metres. In zones of high strain, augen of quartz-338 

sericite-carbonate altered dacite are often enclosed in intensely foliated sericite-carbonate-339 

fuchsite-chlorite altered dacite (Fig. 9g-h). Late anastomosing veinlets of yellow-green sericite 340 

(Fig. 9j) cut all earlier phases, and are in turn cut by quartz-carbonate±chlorite veins that host 341 

minor amounts of base metal sulfides (pyrite>galena-sphalerite>>chalcopyrite).  342 

In the monomict dacite breccia facies, clasts are porphyritic and display evidence for 343 

quench fragmentation (including various stages of disintegration – described in Hildrew et al. 344 

in prep). The matrix is often intensely altered by quartz-sericite-chlorite-carbonate, more so 345 

than the clasts. When present, sulfide mineralization occurs first as disseminations in the 346 

matrix, then as a network of fine stringers, before finally replacing the clasts (Fig. 8d-e).  347 

Mafic rocks at Nimbus comprise relic sericite-altered plagioclase laths and minor 348 

leucoxene, Fe-oxides and pyrite, with interstitial albite, sericite, quartz, carbonate, chlorite and 349 

fuchsite. In hyaloclastite, the matrix is often intensely altered leaving well-preserved igneous 350 

textures in the clasts (Supplementary Fig. 1f). By contrast, in coherent mafic rocks, nearly all 351 

primary textures have been destroyed by hydrothermal alteration (Supplementary Fig. 1g-h).  352 



Thin zones of sedimentary chert have also been described from Nimbus by several 353 

workers (e.g. Marjoribanks, 2012), with an apparent banding of quartz-carbon (Fig. 9k). Thin 354 

sections examined containing ‘chert’ are related to the intense silicification of dacite and black 355 

shale, as described by Doyle (1998) and Belford (2011). Other sections of core contain irregular 356 

patches of dark cryptocrystalline silica with textures indicative of precipitation in open space 357 

(Fig. 9i).  358 

6. Whole rock geochemistry 359 

6.1. Methods 360 

A total of forty-seven samples were analysed from diamond drillcore across the Nimbus 361 

stratigraphy (holes BOD0202, NBDH010, NBDH013, NBDH024 and NBDH035; see Fig. 5 362 

for locations) and distal drillhole BODH015. Samples were submitted to two laboratories for 363 

analysis. Thirty-two (IG-prefixed) samples were powdered using a tungsten carbide mill and 364 

submitted to Intertek Genalysis, Perth, Western Australia. A further fifteen (ALS-prefixed) 365 

samples were submitted to ALS Laboratories, Perth. Further detail on digestion techniques, 366 

analytical methods, accuracy and precision are presented as Supplementary Information. Data 367 

is presented in Supplementary Table 1. A detailed discussion of the mobile element 368 

geochemistry in relation to hydrothermal alteration and mineralization is beyond the scope of 369 

this work and will be presented elsewhere (Hollis et al. in prep). A brief summary is presented 370 

in the Supplementary Information.  371 

6.2. Immobile element geochemistry 372 

All mafic volcanic rocks from Nimbus (including those intercepted in distal drillhole 373 

BODH015) are geochemically similar, characterised by low Zr/Y and Nb/Y ratios (i.e. 374 

subalkaline and tholeiitic compositions; Fig. 10a), flat REE profiles (La/Yb 0.9-2.4; Fig. 10g), 375 



and an absence of pronounced negative Nb anomalies on multi-element variation diagrams. 376 

Samples display either weakly developed negative or positive Eu anomalies (Fig. 10g), 377 

reflecting the mobility of this element in high temperature and/or reducing hydrothermal fluids 378 

(Sverjensky, 1984). Comparison of the Nimbus mafic rocks to the dataset of Barnes et al. 379 

(2012), who compiled whole-rock geochemical data from across the Eastern Goldfields, 380 

highlights their similarity to the low-Th tholeiite suite (Fig. 11b-d) – which includes the 2.7 Ga 381 

plume head Lunnon basalt and Golden Mile Dolerite (~20 Myr younger). Mafic rocks from 382 

Nimbus are plotted on various tectonic discrimination diagrams in Figure 11. Although samples 383 

straddle the MORB and BABB (backarc basin basalt) fields (Fig. 11a-b), their geochemical 384 

characteristics are also consistent with plume-head lavas (see Discussion). On the Th/Yb vs. 385 

Nb/Yb diagram of Pearce (1983), Nimbus mafic rocks plot between nMORB and eMORB just 386 

above the mantle array, due to elevated Th/Yb values - either a consequence of subduction 387 

zone processes or crustal contamination (Fig. 11c; see Discussion). 388 

Felsic volcanic and volcaniclastic rocks analysed from Nimbus are of FI affinity 389 

according to the VHMS fertility classification diagrams of both Lesher et al. (1986; Fig. 10e) 390 

and Hart et al. (2004; Fig. 10f). These rocks display steep TTG-like REE profiles (La/Yb 21.7-391 

107.0; Fig. 10h), pronounced negative Nb anomalies, high Th/Yb and Zr/Y, and very low 392 

HFSE concentrations (e.g. ~3ppm Y, <0.5ppm Yb). Felsic geochemical data from the Teutonic 393 

Bore and Jaguar VHMS deposits are plotted for comparison to the Nimbus dacite in Figure 10i. 394 

Two samples of brecciated dacite from Nimbus have low La/Yb ratios (5.8-6.3; Fig. 10h) – 395 

possibly a consequence of LREE mobility during hydrothermal alteration or the accidental 396 

incorporation of minor sedimentary material (i.e. peperite).  397 

Samples of dacite clasts from the polymict conglomerates intersected in drillhole 398 

NBDH010 and volcanic sandstones from distal diamond drillhole BODH015 are 399 

geochemically indistinguishable to samples of dacite which host the Nimbus deposit. Slightly 400 



higher trace element concentrations on multi-element variation diagrams (Fig. 10h) are due to 401 

weaker mass gains of the major elements, and consequently a reduced dilution of the immobile 402 

trace elements. Bulk geochemical shifts in immobile ratios of the polymict conglomerates show 403 

variations in Sc/V, Zr/Y, V/Al and Cr/Al ratios (see Fig. 7) which reflects the pulsing of the 404 

debris flows with varying amounts of incorporated dacitic and sedimentary material (Fig. 6d-405 

e). 406 

Komatiites intersected in drillhole BODH015 are depleted in the LREE respective to 407 

the HREE, with flat HREE profiles (Fig. 10g). Discrimination between Barberton- and Munro-408 

type komatiites can be achieved using Al2O3/TiO2 and (Gd/Yb)N ratios (e.g. Arndt and Lesher, 409 

2004). Al2O3/TiO2 (21.0 to 22.2) and Gd/YbN ratios (1.03-1.33) for samples from hole 410 

BODH015 are similar to those of Al-undepleted Munro-type komatiites (Al2O3/TiO2 ~20; 411 

Gd/YbCN ~1.0), common in the Eastern Goldfields Superterrane.  412 

 413 

7. SHRIMP U-Pb zircon geochronology 414 

7.1 Methods 415 

Several large ~10 kg samples were collected from diamond drillcore for U-Pb zircon SHRIMP 416 

geochronology to determine if the host stratigraphy formed part of the 2670-2690 Ma Black 417 

Flag Group (which has similar lithologies and mafic units of low-Th tholeiitic composition; 418 

Hayman et al. 2015b) as previously believed by mine geologists. Approximately 2–3 kg of 419 

least-altered sample was processed for mineral separation at Geotrack Pty Ltd in Melbourne, 420 

Victoria. Zircons were separated using standard techniques and mounted on 25 mm diameter 421 

epoxy-resin mounts with chips of M257 zircon (main U/Pb calibration standard, 561.3 Ma, 840 422 

ppm 238U; Nasdala et al., 2008), NBS610 glass, OGC-1 (Pilbara granite zircons, 207Pb/206Pb 423 



age 3465 Ma, equivalent to OG1 of Stern et al., 2009; Supplementary Figure 2) and TEMORA 424 

(417 Ma; Black et al., 2003).  Only samples of dacite yielded sufficient zircon for analysis. 425 

Two samples were dated: dacite from drillhole NBDH010 under the East Pit (sample NIM011, 426 

491-494m) and dacite from drillhole NBDH035 under the Discovery Pit (SPHGEO1, 285.4-427 

288.5m). Isotopic analyses were performed on the SHRIMP II instrument at the John de Laeter 428 

Centre of Mass Spectrometry at Curtin University. Further detail is provided as Supplementary 429 

Information.  430 

 431 

7.2 Results 432 

Zircons from samples NIM011 and SPHGEO1 display euhedral to subhedral igneous habit, 433 

with some angular anhedral grains likely representing fragments of larger, more euhedral 434 

grains. All zircons are similar in size at around 100-200 µm long and 100 µm wide, brown-435 

clear in transmitted light, and display igneous textures (e.g. oscillatory zoning). Most grains 436 

appear pristine and evidence of metamictisation, such as darkening of grains or zones in BSE 437 

images, is rare, although cracks of varying size occur in many zircons.  438 

Nimbus East Pit dacite. Twenty-six analyses on 22 grains were performed on zircons from 439 

sample NIM011. Eight analyses were removed. Four due to poor spot placement (i.e. the spot 440 

was placed on cracks resulting in analyses demonstrating Pb-loss) and four due to relatively 441 

low UO/U ratios suggesting U fractionation on analysis. The remaining 18 analyses yield a 442 

single concordant group (all analyses are ≤6% discordant). Due to the high concordance, a 443 

weighted mean age was used, yielding an age of 2702 ± 4 Ma (MSWD 0.91; Fig. 12a). The 444 

age is interpreted as the crystallisation age of the dacite. 445 



Nimbus Discovery Pit dacite. Twenty-six analyses on 25 grains were performed on zircons 446 

from SPHGEO1. Four analyses were removed. Two due to poor spot placement and two due 447 

to high common Pb (>1%) (Table 1). The remaining 22 analyses yield a single concordant 448 

group (all analyses are ≤5% discordant). Due to the high concordance, a weighted mean age 449 

was used, yielding an age of 2703 ± 5 Ma (MSWD 2.2; Fig. 12b). It should be noted that 450 

analysis 15-1 (core), dated at 2804 ± 28 Ma, was removed due to f206 (percentage of common 451 

206Pb) of 1.4 and may represent an inherited zircon (Fig. 12b). Although an f206 value of 1.4 452 

warrants removal, it is unlikely to significantly alter the age of the grain, suggesting this may 453 

be accurate. The data for the rim of this grain (15-2) yielded an age of 2687 ± 32 Ma (2σ) and 454 

is part of the crystallization event. Although the MSWD for sample SPHGEO1 is higher than 455 

preferred, no further analyses could be removed as no problems were identified with the data 456 

or grains. The slight spread in ages is interpreted as a small amount of U-Pb mobility due to 457 

the Archean age of the sample and its proximity to a hydrothermal system. The probability 458 

density plot demonstrates that this sample is essentially unimodal. An alternative explanation 459 

is that analysis 21-1, which yields a slightly anomalous age at 2727 ± 16 Ma, may be a 460 

xenocryst. Removal of this analysis produces an age of 2701 ± 5 Ma (MSWD 1.8). As there is 461 

no direct physical evidence to support this, the first age is interpreted as the crystallisation age 462 

of the dacite. 463 

8. O isotopes 464 

8.1. Methods 465 

Oxygen isotope analysis of dated zircons was completed to help characterize the formation of 466 

the Nimbus dacite. Oxygen isotope ratios (18O/16O) in zircon were determined in samples 467 

NIM011 and SPHGEO1 via secondary ion mass spectrometry (SIMS) using a Cameca IMS 468 

1280 multi-collector ion microprobe at the Centre for Microscopy, Characterisation and 469 



Analysis (CMCA), University of Western Australia (UWA). The sample mount was re-470 

polished to remove SHRIMP analytical pits before cleaning with detergent, distilled water and 471 

ethanol in an ultrasonic bath. Samples were coated with gold (30 nm in thickness) prior to 472 

SIMS analyses. Instrument setup, conditions for analysis, accuracy and precision are described 473 

fully in the Supplementary Information. Raw 18O/16O ratios and corrected δ18O (quoted with 474 

respect to Vienna standard mean ocean water or VSMOW) are presented in the Supplementary 475 

Table 2 and Figure 13.  476 

 477 

8.2. Results 478 

Nineteen 18O/16O SIMS analyses were performed on 17 zircons from NIM011 (Nimbus 479 

East Pit dacite; Figure 13). Two analyses were removed due to U-Pb discordance >5% (23-2, 480 

10-1) and one as a significant outlier (34-1) related to high DTFA value (>40) at this analytical 481 

locality (on the limit of acceptable field centering parameters). All grains had been previously 482 

dated by SHRIMP, apart from grain 20. Data from this grain was within error of all other 483 

analyses and hence was not discarded. The results of δ18O analyses of these grains range from 484 

5.85±0.34‰ to 6.13±0.35‰ and indicate a homogenous single, uniform population in terms 485 

of δ18O, with a weighted mean value of 5.99±0.09‰ (2σ; MSWD 0.29). This error is unlikely 486 

to be representative based on individual spot errors, but the MSWD does demonstrate the 487 

excellent grouping between the data. A more realistic group δ18O value for the zircons of 488 

NIM011 can be acquired by using the median value that accounts for any possible non-normal 489 

behaviour in the data. This yields a δ18O value of 5.98±0.19‰ (2σ) (Fig. 13c). The error on 490 

this value is simply the standard deviation of the δ18O analytical data, and is more realistic 491 

given the individual spot errors. The data range from the ‘normal’ mantle zircon range into 492 

slightly enriched δ18O compositions. The median value is slightly enriched relative to, but 493 

within error of, typical mantle δ18O values. Despite these slightly enriched values, the median, 494 



weighted mean, and all 16 analyses are within error of the mantle value and also <6.5‰; 495 

considered the maximum accepted value for mantle-derived components (Cavosie et al., 2005; 496 

Kemp et al., 2006). 497 

Nineteen analyses were performed on 18 zircons from SPHGEO1 (Nimbus Discovery 498 

Pit dacite; Fig. 13). Three analyses were removed due to correlations between slightly lower 499 

δ18O values (5.69‰ and 5.58‰; compared to main group), common-Pb >1% (15-1), and low 500 

Th/U (0.025, 15-2). These data suggest grain 15 has slight crystal lattice damage. Analysis 17-501 

1 was removed due to cracking in and around the analysis site. The remaining 16 analyses were 502 

all performed on previously SHRIMP-dated zircons and range from 5.90±0.35‰ to 503 

6.29±0.34‰. These data yielded a weighted mean δ18O value of 6.08±0.09‰ (2σ; MSWD 504 

0.43). As with NIM011, the low MSWD suggests excellent uniform grouping of the data, 505 

suggestive of a single population. The median δ18O for these zircons is 6.05±0.23‰. As for 506 

NIM011, Figure 13d shows a slight range in the δ18O data from values within the ‘normal’ 507 

mantle field to just outside (>5.9‰). This may suggest mixing between a mantle-derived and 508 

heavy δ18O component (see Discussion). However, the median and weighted mean values for 509 

this sample are within error of the mantle field. In addition, only two individual analyses fall 510 

outside of the mantle range (12-1, 20-1). These observations, together with the low MSWD, 511 

suggest the δ18O data from SPHGEO1 constitute uniform group and that internal δ18O variation 512 

is a function of zircon quality and preservation. Figure 13b demonstrates that this sample, with 513 

a MSWD of 2.2 in U-Pb space, also has the greater variability in δ18O. NIM011 has very low 514 

internal variability in both U-Pb and δ18O space, suggesting these grains are slightly better 515 

preserved. 516 

9. Pb isotopes 517 

9.1. Methods 518 



Samples of galena were analysed from the Nimbus deposit for Pb isotopes to characterize the 519 

isotopic affinity of the underlying crust and source of metals (e.g. Huston et al., 2014). Galena 520 

was hand-picked under the microscope from two samples of mineralized dacite 521 

(NBDH013_334m and NBDH035_175m) for Pb isotope analysis. Samples were dissolved and 522 

prepared using standard wet chemical techniques. Prepared filaments loaded into a Triton 523 

Thermal Ionization Mass Spectrometer (TIMS) at Curtin University, Western Australia. Wet 524 

chemical techniques, operating conditions, precision and accuracy are detailed in the 525 

Supplementary Information. 526 

 527 

9.2. Results 528 

 529 

Lead isotope results from Nimbus are presented in Supplementary Table 7 and plotted in Figure 530 

14, together with published Pb isotope data from across the Eastern Goldfields. The two 531 

samples analysed have almost identical 206Pb/204Pb (13.49), 207Pb/204Pb (14.68) and 208Pb/204Pb 532 

(33.27-33.28) ratios. These values are quite close to that of pyrite from an unnamed Kambalda-533 

type komatiitic Ni sulfide deposit analysed by McNaughton et al. (1990; 206Pb/204Pb=13.52; 534 

207Pb/204Pb=14.65). Published values from galena and chalcopyrite of the ca. 2690 Ma Teutonic 535 

Bore, Jaguar and Bentley VHMS deposits have significantly lower 206Pb/204Pb (13.36-13.40), 536 

207Pb/204Pb (14.53-14.55) and 208Pb/204Pb (33.14-33.22) ratios than those obtained from 537 

Nimbus (Vaaskoki, 1985; Browning et al. 1987; Dahl et al. 1987; McNaughton et al. 1990; 538 

Huston et al. 2014).  Using the Cumming and Richards (1975) model, calculated model ages 539 

for the Nimbus and Teutonic Bore deposits are similar at 2.76 and 2.75 Ga. According to 540 

McNaughton et al. (1990), this model overestimates the ages of mineral deposits in the Eastern 541 

Goldfields by ~0.7 Ga. This is consistent with the two new SHRIMP U-Pb zircon ages from 542 

Nimbus presented here (ca. 2703 Ma), and existing U-Pb zircon constraints from Teutonic Bore 543 



(ca. 2690 Ma; Pidgeon & Wilde, 1990; Nelson, 1995). The Abitibi-Wawa model was 544 

developed for the Abitibi province of Canada (e.g., Thorpe, 1999), but it is also considered to 545 

be applicable for the Eastern Goldfields Superterrane (Huston et al., 2014). This model gives 546 

quite accurate Pb-Pb model ages of 2.70 Ga using a  (238U/204Pb) value of 7.65 (instead of 8 547 

used by Huston et al., 2014). Calculated µ (238U/204Pb) values from Nimbus using the Abitibi-548 

Wawa model are 8.34, which is significantly higher than the Teutonic Bore, Jaguar and Bentley 549 

VHMS deposits (µ = ~8.06; Huston et al., 2014).   550 

 551 

10. Discussion 552 

10.1. Formation the Nimbus stratigraphy 553 

The presence of peperitic upper and lower contacts for mafic rocks at Nimbus (Fig. 6i) 554 

and abundant hyaloclastite (Fig. 9j) suggests that mafic rocks most likely represented shallow 555 

invasive flows or sills into unconsolidated wet sediments (detailed in Hildrew et al., in prep). 556 

Furthermore, the presence of peperitic contacts between carbonaceous mudstones and the host 557 

dacite (e.g. Doyle, 1998) indicates that all units were broadly coeval and syn-depositional in 558 

timing (Fig. 15a). Although it is not clear whether the polymict volcanic conglomerates NE of 559 

Nimbus (which contain variably altered clasts of dacite) form part of the stratigraphic hanging-560 

wall or footwall (see Stratigraphy), these rocks display evidence for the reworking of dacitic 561 

clasts in a high-energy environment, and their emplacement into an anoxic basin via turbidity 562 

currents (Hildrew et al. In prep). A shallow water environment (below storm wave base) is 563 

favoured based on metal associations (e.g. high Ag, Hg; see Section 10.4). Distal expressions 564 

of these turbidity currents may be represented by the thick sequences of sandstone and 565 

mudstone in drillhole BODH015. The presence of komatiites are indicative that the sequence 566 



was deposited during a period of plume magmatism - either cycle 1 or 2 of Hayman et al.(2015). 567 

Two new U-Pb zircon SHRIMP dates of 2703 ± 5 Ma and 2702 ± 4 Ma from the host dacite 568 

indicate that the local stratigraphy forms part of the Kambalda Sequence (cycle 2 of Fig. 3).  569 

10.2. Tectonic Setting: geochemical and geological evidence 570 

There is still considerable debate on the tectonic setting of the >2.72 Ga stratigraphy of the 571 

Eastern Goldfields Superterrane. Competing models for the formation of the Yilgarn Craton 572 

variably invoke Archean subduction, arc and/or plume magmatism, rifting and the accretion of 573 

allochtonous terranes (discussed in Czarnota et al., 2010; Barnes et al., 2012; Van Kranendonk 574 

et al., 2013; Hollis et al., 2015).  Debate primarily concerns whether subduction is required to 575 

explain the evolution of the Eastern Goldfields Superterrane (EGS) and which of the various 576 

terranes and domains have a common history. While a number of workers favour both plume 577 

and subduction processes (Czarnota et al., 2010), others highlight the problem of scale as plume 578 

magmatism is expected to overwhelm subduction (Barnes et al., 2012; Van Kranendonk et al., 579 

2013; Barnes & Van Kranendonk, 2014). In addition, there is no physical geological evidence 580 

of the existence of a subduction accretionary prism or melange zone, or of a blueschist facies 581 

metamorphic zone anywhere in the Yilgarn Craton.  582 

Data presented here are consistent with the findings of Barnes et al. (2012), Barnes and 583 

Van Kranendonk (2014), and Hayman et al. (2015b), that plume magmatism combined with 584 

assimilation-fractional crystallization processes and magma-mixing can produce all the 585 

observed geochemical characteristics for mafic, intermediate and felsic rocks in the Eastern 586 

Goldfields. Although all mafic rocks from Nimbus plot in the nMORB to eMORB/WPB and 587 

arc-related (e.g. IAT, BABB) fields of various tectonic discrimination diagrams (Fig. 10a-b), 588 

they bear a striking resemblance to the low-Th suite of Barnes et al. (2012), suggested to 589 

represent plume head lavas, common throughout both the Kalgoorlie and Kurnalpi terranes.   590 



Perhaps the most convincing argument is that komatiites require high degrees of partial 591 

melting only possible in a mantle plume (see Campbell & Hill, 1988). Whereas komatiitic 592 

cumulate bodies of the Kalgoorlie Terrane are interpreted as the products of high-flux komatiite 593 

volcanism focussed along the eastern margin of the Youanmi Terrane (Fig. 1), thin and sparsely 594 

distributed komatiites of the Kurnalpi terrane most likely represent flows or ponded lava lakes 595 

(Barnes et al., 2012). As the overlying Devon Consols and Paringa basalts of the Kalgoorlie 596 

Terrane (Fig. 3b) can be modelled through progressive contamination and fractionation of 597 

plume derived magma, it is logical to attribute their origins to a plume source as well (Barnes 598 

et al., 2012; Hayman et al., 2015b). The problem with using tectonic discriminations for 599 

Archaean rocks where contamination from pre-existing continental crust is common (detailed 600 

in Wyche et al., 2013; Mole et al., 2013) is highlighted in Figure 11 and discussed by Bédard 601 

et al. (2013; also Pearce, 2008). The Devon Consols and Paringa basalts parallel the trend of 602 

samples from Teutonic Bore (frequently ascribed to an island arc/backarc; see following), and 603 

in reality none may have formed above a subduction zone. As argued by Bédard et al. (2013), 604 

Archaean magmas frequently interpreted as being arc-related often do not have Th/Yb and 605 

Nb/Yb ratios that parallel the mantle array - a typical feature of Phanerozoic arcs, caused by an 606 

addition of Th to the source without changing Nb or Yb. This is highlighted by the oblique 607 

trend to the mantle array in Figure 11c caused by fractional crystallization and crustal 608 

contamination processes (Pearce, 2008; Bédard et al., 2013).  609 

In order to explain the petrogenesis of <2.72 Ga intermediate and felsic rocks of the 610 

Kurnalpi and Kalgoorlie terranes Czarnota et al. (2010) suggested that west dipping subduction 611 

was initiated between 2715 Ma and 2690 Ma. This resulted in arc volcanism in the Kurnalpi 612 

Terrane and backarc extension in the Kalgoorlie Terrane. In addition to the above geochemical 613 

arguments against subduction (due to a lack of diagnostic criteria), the paucity of andesites at 614 

Nimbus and throughout the Kalgoorlie terrane is also difficult to reconcile if the Nimbus 615 



dacites formed in a ‘continental arc’ (Fig. 11c). If a backarc scenario is proposed for the 616 

Kalgoorlie Terrane, as in Czarnota et al. (2010), this is at odds with the FI affinity and strongly 617 

HREE-depleted TTG-like character of the Nimbus dacites, implying a thickened crust and deep 618 

crustal melting (see section 10.5).  619 

10.3. Tectonic setting: isotopic evidence 620 

Oxygen isotope data presented here represents the first of its kind from felsic volcanic rocks of 621 

the Yilgarn Craton, and hence offers a new window into the genesis of these magmas. As 622 

discussed in detail in section 8.2, δ18O results from ca. 2703 Ma zircons of NIM011 and 623 

SPHGEO1 demonstrate a predominant mantle affinity. In sample NIM011 the median and 624 

weighted mean values overlap with the mantle zircon field (within error) and all individual 625 

analyses overlap with this field. In SPHGEO1, there is slightly more variation, however the 626 

median and 14 of 16 analyses still overlap with the mantle zircon field. Only the weighted 627 

mean value and two data-points (12-1, 23-1; SPHEGEO1) fall outside of the mantle range, and 628 

by a very small margin (0.01‰ and 0.05‰, respectively; Fig. 13c-d). In addition to this, despite 629 

the small amount of enrichment evident by the fact the data does not plot directly within the 630 

mantle range, all data points, medians and weighted means are below the 6.5‰ cut-off for 631 

zircons considered to have a mantle source and minor to negligible sedimentary component 632 

(Cavosie et al., 2005; Kemp et al., 2006). These data, taken together, suggest a mantle affinity 633 

for zircons from the Nimbus dacite (median of all data is 6.03±0.23‰). However, there appears 634 

to be evidence of slight enrichment in δ18O as suggested by absolute median, weighted mean 635 

and individual analyses slightly above, but within error of, the mantle zircon field (Fig. 13b). 636 

This suggests mixing, homogenization (borne out by the low MSWD) between a heavy δ18O 637 

source and mantle-derived material.  638 



Some sources of heavy δ18O material in geological systems are presented in Figure 13a. 639 

These are predominantly sedimentary material, altered oceanic crust/volcanics, metamorphic 640 

rocks and slab/sediment melts. Hence incorporation of one or multiple of these components 641 

could lead to the slight enrichment observed in the zircons of the Nimbus dacite. The 642 

enrichment appears to be minor, as most values for these samples overlap with the mantle-643 

zircon field. This suggests that any additional material added was either moderately heavy, or 644 

in small volumes relative to the mantle component. 645 

The lack of known high-grade metamorphic rocks in the area appears to preclude their 646 

involvement. The incorporation of slab and/or sediment melts is a possibility but infers a 647 

convergent margin setting (oceanic or continental arc). Whilst collated data in Figure 13a 648 

demonstrates the difficulty in using δ18O values as an indicator of tectonic setting, due to 649 

overlap in signatures for various settings, these data indicate incorporation of a high δ18O 650 

component via subduction is unlikely. Firstly, the data presented in Figure 13b is remarkably 651 

uniform (low MSWD), and does not demonstrate the ‘trend’ of data from mantle-zircon to 652 

δ18O>6.5‰ observed in many arc settings (Bolhar et al., 2008; Dai et al., 2011; Jiang et al., 653 

2012; King and Valley, 2001; Lackey et al., 2006; Lackey et al., 2005; Li et al., 2012; Roberts 654 

et al., 2013; Wang et al., 2013; Zheng et al., 2012; Fig. 13b). Secondly, when the data is 655 

compared to a probability density curve of arc-zircon δ18O values (Fig. 13b), and their 656 

associated median (6.8‰), the Nimbus dacite falls well below that median as well as the peak 657 

of the curve (inflexion at ca. 6.5‰). This demonstrates the majority of arc zircons have a 658 

minimum δ18O >6.5‰; a component not observed in the Nimbus dacite. While these 659 

observations do not rule-out an arc origin for these magmas, this information, in conjunction 660 

with regional geology, geochemistry and geochronology, makes a subduction origin for these 661 

magmas unlikely. 662 



As detailed above, Barnes and Van Kranendonk (2014) suggest the origin of ca. 2.7 Ga 663 

felsic volcanism at Mt Keith (Agnew-Wiluna greenstone belt; Rosengren et al., 2008) and 664 

Black Swan (Boorara Domain; Cas et al. 2013) was the product of fractionation of 665 

plume/mantle-derived tholeiitic basalts and contamination with partial melts of pre-existing 666 

continental crust. Without δ18O data for >2.7 Ga Yilgarn granites/TTGs, it is difficult to assess 667 

this model using the oxygen isotopes collected here. However, based on the collated zircon 668 

δ18O from Archean cratons (Figs. 13b), it would initially appear that the majority of data are 669 

too ‘mantle-like’, to represent the enriched component in the Nimbus dacite. Relatively rare 670 

high-Mg Archean sanukitoids displaying higher δ18O, averaging 6.5±0.4‰ (Superior Province; 671 

Valley et al. 2005), offer another viable contaminant, although it should be noted that Yilgarn 672 

sanukitoids are typically <2.7 Ga (Cassidy et al., 2005; Champion and Cassidy, 2007) and not 673 

typical of the TTG compositions modelled by Barnes and Van Kranendonk (2014). As a result, 674 

the model of Barnes and Van Kranendonk (2014) may be supported by the oxygen-isotope 675 

data, but this cannot be quantitatively constrained until data for the pre-2.7 Ga δ18O of the 676 

Yilgarn crust is available. 677 

As a result, our preferred model for the slight δ18O enrichment observed in the Nimbus 678 

dacite is interaction, assimilation, and homogenization of a mantle-derived magma with coeval 679 

mudstones and/or basaltic rocks, both of which would have had an enriched δ18O signature as 680 

suggested by data in Figure 13a (ca. 13‰ Land and Lynch, 1996, and 17-9‰ Knauth and 681 

Lowe, 2003, respectively). Incorporation of relatively small amounts of altered basalt and/or 682 

mudstone in the dacite plumbing system, as well as at the cryptodome-mudstone interface, 683 

followed by homogenization, created a source with a uniform, but slightly enriched δ18O 684 

composition dominantly within error of the mantle zircon field.  685 

Lead isotope data presented here further implicate a mantle source and the melting of 686 

pre-existing continental crust in the genesis of most VHMS and epigenetic Au orebodies of the 687 



Eastern Goldfields (Fig. 14). Samples analysed from Nimbus plot on a mixing trend between 688 

the Archean mantle (i.e. values closer to Teutonic Bore) and continental crust (represented by 689 

Stennet granodiorite; see McNaughton and Groves, 1996), comparable to epigenetic Au 690 

deposits of the Eastern Goldfields (McNaughton et al. 1990; 1993; Fig. 14). Galena from 691 

Nimbus is more radiogenic than the Teutonic Bore ore cluster (Teutonic Bore, Jaguar and 692 

Bentley deposits) and has a similar isotopic composition to Kambalda-type Ni sulfide deposits 693 

(McNaughton et al., 1990), which is consistent with an overall increase of a radiogenic lead 694 

component southwards within the Norseman-Wiluna Terrain (McNaughton and Groves, 1996; 695 

Fig. 14) and the position of Nimbus on the margin of the Kurnalpi rift zone (see Section 10.5).  696 

10.4. Genesis of the Nimbus Ag-Zn deposit 697 

Data presented here are consistent with the Nimbus Ag-Zn-(Au) deposit representing a 698 

relatively shallow-water and low-temperature VHMS deposit with epithermal characteristics. 699 

Petrographic evidence, including the replacement of dacite by early ‘colloform’ pyrite (e.g. 700 

Crawford, 2012) and monomict dacite breccias by Ag-Zn-Pb-(Au) rich massive sulfides, 701 

indicate that the Nimbus deposit formed sub-seafloor through the replacement of the host 702 

stratigraphy. Hydrothermal fluids were preferentially focussed through the most permeable 703 

strata (Fig. 15). Quench fragmented monomict dacite breccias were particularly susceptible, 704 

due to the breakdown and replacement of volcanic glass in the matrix (Fig. 6g), and eventually 705 

the replacement of clasts themselves (Fig. 8e). Massive Ag-Zn-Pb-(Au) mineralization is best 706 

developed where these breccias are thickest, with a complete transition of both massive Ag-707 

Zn-Pb-(Au) mineralization and quench fragmented dacite (Fig. 8e) into a weakly mineralized 708 

(stringer sphalerite-pyrite) and coherent dacite facies (Fig. 8k). Breccia ores and stringer veins 709 

which connect lenses of massive sulfide may have acted as feeders, and are commonly marked 710 

by hydraulic fracture breccia zones, propagated by over-pressured hydrothermal fluids (cf. Cas 711 

et al., 2011). Similar preferential fluid flow is evident in the mafic rocks where coherent units 712 



are evenly altered (quartz-carbonate-chlorite; Supplementary Fig. 1h) and in hyaloclastite the 713 

matrix was the first phase to be altered and mineralized (Supplementary Fig. 1f). Contacts 714 

between mafic and felsic rocks also focussed hydrothermal fluids, which are associated with 715 

broad zones of sericite-carbonate-fuchsite-chlorite alteration (Fig. 10h). Narrow zones of 716 

intense chloritization (Fig. 9e) were most likely associated with higher-temperature fluid 717 

pathways and may have once been zones of hydrothermal hydraulic fracturing (e.g. Fig. 9i), or 718 

faults (Fig. 15).   719 

The mineralogy of the Nimbus deposit is consistent with a low temperature (<200 ˚C) 720 

system; this includes: (i) low Cu-Au throughout most of the deposit (including only trace 721 

amounts of chalcopyrite in most lenses); (ii) the abundance of Ag-Sb-As-Pb bearing sulfosalts 722 

(drawing parallels to modern hydrothermal systems and hybrid VHMS-epithermal deposits – 723 

see following); and (iii) high Hg in sphalerite (McArthur, 2012). Alteration assemblages 724 

associated with mineralization at Nimbus are also typical of lower temperature VHMS 725 

deposits. The distal albitic alteration may have formed during diagenesis or reflect a low 726 

temperature hydrothermal alteration assemblage (Doyle, 1998). The latter often surround 727 

sericitic zones of felsic-hosted VHMS deposits (e.g. Bathurst Mining Camp, Mount Read 728 

province; Large et al., 1996; Goodfellow & McCutcheon, 2003). The primary mineral 729 

assemblage of pyrite, tetrahedrite and minor chalcopyrite indicate Nimbus was of intermediate 730 

sulfidation, although the presence of covellite, enargite (associated with chalcopyrite) and 731 

freibergite in holes NBRC202 and NBRC203 (McArthur, 2012; blue bars in Fig. 4) suggest 732 

some lenses may have been of higher sulfidation (e.g. Yeats et al., 2014).  733 

Regarding the nature of the hydrothermal fluid involved in mineralization, the 734 

preservation of phenocrysts throughout much of the deposit, and an abundance of sericite with 735 

little chlorite, suggests ascending hydrothermal fluids were dominated by a magmatic 736 

component with minimal seawater (Doyle, 1998; Fig. 15). It is also clear that some sections of 737 



massive pyrite did not experience the Zn-Pb-Ag event (marked by a complete absence of base 738 

metal sulfides and sulfosalts). This may be indicative of some degree of compartmentalisation 739 

of the hydrothermal fluids throughout the deposit. The distribution of arsenopyrite is also 740 

patchy throughout the deposit, suggesting some mineralized lenses were effectively sealed 741 

during the introduction of As and possibly Au (as the two are broadly correlated).  742 

A potential modern analogue for the Nimbus deposit is the Palinuro Volcanic Complex, 743 

Aeolian arc, Italy, where sub-seafloor mineralization occurs at water depths of ~650mbsl 744 

(metres below sea level; Petersen et al., 2014). In addition to the presence of Ag-Au rich 745 

massive sulfides of comparable grade to Nimbus (0.4 g/t Au & 130ppm Ag; to 925ppm Ag 746 

locally), the main low temperature phase is somewhat similar. The barite cap is cemented and 747 

was brecciated by barite-pyrite, minor chalcopyrite, tetrahedrite, trace famatinite [Cu3Sb3S4] 748 

and rare cinnabar. A low-temperature phase of sphalerite, galena, opal-A, barite and Pb-Sb-As 749 

sulfosalts (e.g. bournonite, semseyite [Pb9Sb8S21] occurred prior to a transition to very high 750 

sulfidation (marked by enargite and hypogene covellite with galena and sphalerite) and the 751 

formation of late colloform pyrite and marcasite. Similar precious metal rich VHMS deposits 752 

in Canada include the Au-Ag-Cu-Zn Eskay Creek deposit, interpreted to have formed at <200 753 

˚C and ~1500 mbsl from fluid inclusion evidence (see Barrett & Sherlock, 1996; Sherlock et 754 

al., 1999).   755 

 756 

10.5. Implications for VHMS exploration in the Eastern Goldfields 757 

Recent work on the timing, setting and style of VHMS mineralization in the Yilgarn Craton 758 

has emphasized the importance of episodic linear zones which apparently provide strong 759 

controls on the focus of mineralization (Huston et al., 2014; Hollis et al., 2015; Fig. 2). It has 760 

also given rise to an investigation of the potential for additional discoveries in similar 761 



geodynamic settings (e.g. Bore Well, Erayinia/King, Mount Gill; Fig. 1; Hollis et al., in press).  762 

Compared to other VHMS occurrences in the Yilgarn Craton, the Nimbus deposit is unusual 763 

in terms of its tectono-stratigraphic position, the geochemistry of its host sequence, its 764 

mineralogy, and alteration assemblages.  765 

The tectono-stratigraphic position of the Nimbus deposit is unusual in two regards: (i) 766 

its position in the Kalgoorlie Terrane, where no other VHMS deposits have been discovered 767 

(discounting barren pyritic lenses), and (ii) its age. Two new U-Pb zircon SHRIMP dates of 768 

2703 ± 5 Ma and 2702 ± 4 Ma from the host dacite indicate that the local stratigraphy forms 769 

part of the Kambalda Sequence (Fig. 3). This is further substantiated by the presence of Al-770 

undepleted Munro-type komatiites in drillhole BODH015 and low-Th tholeiitic basalts 771 

throughout the deposit stratigraphy (Fig. 10b-d). Cr-V rich fluids that produced the fuchsite at 772 

Nimbus may have also been sourced from the alteration of komatiites deeper in the volcanic 773 

pile. The only other known VHMS deposits of this age occur in the Kurnalpi rift zone. At 774 

Anaconda (Fig. 2), historic mining mainly prior to 1908 produced 4595 t Cu from supergene 775 

mineralization above small copper–zinc sulfide lenses (Marston, 1979). Felsic tuff from 776 

Anaconda yielded an age of 2698 ± 5 Ma (Nelson, 2005), which together with the presence of 777 

interbedded komatiites at the nearby base metal Rio Tinto occurrence, suggest the sequence 778 

forms part of the 2.7 Ga plume stratigraphy of the Kurnalpi Terrane (Hollis et al., 2015). The 779 

recognition that the Nimbus deposit is associated with 2.7 Ga plume magmatism opens up new 780 

areas for VHMS exploration in the Kalgoorlie Terrane over a strike length exceeding 500 km. 781 

The presence of FI affinity felsic rocks at Nimbus also makes it unique for a VHMS 782 

deposit in the Yilgarn Craton (reviewed in Hollis et al., 2015), which may be explained by its 783 

position near the margin of the Kurnalpi rift zone. All other significant VHMS occurrences in 784 

the Eastern Goldfields are located in the Kurnalpi rift zone and are associated with FII to FIII 785 

affinity felsic rocks, which display flat chondrite-normalized HREE profiles, slightly enriched 786 



LREE profiles, and low ratios of Zr/Y, Th/Yb and Sc/V (Hollis et al. 2015). FIII affinity felsic 787 

rocks are normally produced by shallow crustal melting associated with crustal extension (e.g. 788 

Lesher et al., 1986; Piercey et al., 2001; Hart et al., 2004). Consequently, the elevated 789 

geothermal gradients are thought to be the main driver for hydrothermal circulation in the upper 790 

crust and the formation of VHMS mineralization. The FI character of the Nimbus dacite (Fig. 791 

10e-f) implies deep crustal melting and the presence of garnet in the source region (Lesher et 792 

al., 1986). Consequently, it is more likely that plume magmatism provided the heat that drove 793 

the hydrothermal system.  794 

Classification of Nimbus as a shallow water VHMS deposit with epithermal 795 

characteristics is also consistent with its position in the Kalgoorlie Terrane, near the margin of 796 

the Kurnalpi rift zone. Hybrid bimodal-felsic VHMS deposits (Piercey, 2011) typically form 797 

in more evolved and thicker crust compared to those with classic Noranda-type Cu-Zn deposits 798 

(e.g. Teutonic Bore, Jaguar, King) (Mercier-Langevin et al., 2011). Furthermore, they are often 799 

associated with subsurface phase separation (resulting in precious metal enrichment) and a 800 

strong magmatic input into the hydrothermal system (Mercier-Langevin et al., 2011; Fig. 15). 801 

This is consistent with our observations from the Nimbus deposit and µ values (see Fig. 2 802 

caption for definition) that are significantly more radiogenic than those from the Teutonic Bore, 803 

Jaguar and Bentley VHMS deposits (Fig. 14). Comparable values to those obtained here from 804 

Nimbus occur north of Kalgoorlie along the margins of the Kurnalpi rift zone (Fig. 2c). One 805 

consequence of this is that prospectivity studies which use the geochemistry of felsic volcanic 806 

rocks to rule out potential areas for mineralization may overlook precious metal rich VHMS 807 

deposits in the Kalgoorlie Terrane, as they are more likely to be associated with FI affinity 808 

felsic rocks than those of FIII affinity.  809 

The observation that the Nimbus stratigraphy is distinctly bimodal (basalt-dacite; Fig. 810 

10a; Fig. 15) is also in stark contrast to VHMS deposits of the Kurnalpi rift zone. Economic 811 



mineralization at Teutonic Bore is hosted in a ca. 2690 Ma sequence which includes FII to FIII 812 

affinity felsic volcanic rocks (Fig. 10i), with ore closely associated with deep marine 813 

argillaceous metasedimentary rocks (Belford, 2010; Belford et al., 2015). A significant 814 

thickness of andesite occurs in the hanging-wall of all three deposits (i.e. Teutonic Bore, Jaguar 815 

and Bentley; Fig. 10i). Andesitic rocks are also a common part of the stratigraphy at Erayinia 816 

in the southern part of the Kurnalpi Terrane, where the King deposit (2.146 Mt at 3.47% Zn, 817 

non-compliant) occurs as two small stratiform replacive lenses in a structurally overturned 818 

volcanic–sedimentary sequence (Hollis et al. in prep). Barnes and Van Kranendonk (2014) 819 

suggested that andesites are common in the Kurnalpi Terrane away from the centre of the 2.72 820 

Ga mantle plume, as low Th tholeiitic basalt and TTG dacite mixed in middle-upper crustal 821 

magma chambers to form a spectrum of andesitic magmas. By contrast, in the Kalgoorlie 822 

terrane, magmatism was dominated by coeval komatiite, low-Th basalt and TTG dacite (Barnes 823 

& Van Kranendonk, 2014). 824 

The absence of significant chloritic alteration at Nimbus is unique for VHMS deposits 825 

in the Archaean Yilgarn Craton. Consequently, many classic vectors to ore such as the intensity 826 

of chloritic alteration, chlorite chemistry (e.g. Fe/Mg ratios using electron microprobe or 827 

hyperspectral data) and alteration indices (e.g. the Box Plot of Large et al. 2001; Hollis et al., 828 

In prep) will not be suitable for the discovery of Nimbus style mineralization in the Kalgoorlie 829 

Terrane, along the margin of the Kurnalpi rift zone.  Instead, the recognition of intense sericite-830 

carbonate±fuchsite alteration in FI affinity dacite, associated with substantial gains in 831 

pathfinder elements As, Sb, Cd and Tl (see Supplementary Information), would be significant.  832 

 833 

11. Conclusions 834 



Data presented here is consistent with the Nimbus Ag-Zn-(Au) deposit representing a shallow-835 

water and low-temperature, intermediate sulfidation VHMS deposit. Two new U-Pb zircon 836 

SHRIMP ages of 2703 ± 5 Ma and 2702 ± 4 Ma from host dacite indicate the Nimbus deposit 837 

was coeval with plume magmatism in the Eastern Goldfields, with the local stratigraphy 838 

forming part of the Kambalda Sequence. Compared to other VHMS occurrences in the Yilgarn 839 

Craton, the Nimbus deposit is unusual in terms of its tectono-stratigraphic position, the 840 

geochemistry of its host sequence (i.e. FI-affinity felsic volcanic rocks, ocean-plateau-like low-841 

Th basalts), mineralogy (e.g. abundance of Ag-Sb-Pb-As bearing sulfosalts, high Hg, low Cu) 842 

and quartz-carbonate-sericite dominated alteration assemblages. Classification of Nimbus as a 843 

shallow water and low temperature VHMS deposit with epithermal characteristics (i.e. a hybrid 844 

bimodal-felsic deposit) is consistent with its position near the margin of this paleo-rift zone, 845 

and more radiogenic Pb isotopic values than galena from the Teutonic Bore VHMS deposits. 846 

The recognition that the Nimbus deposit is associated with 2.7 Ga plume magmatism opens up 847 

new areas for VHMS exploration in the Eastern Goldfields Superterrane over a strike length 848 

exceeding 500 km.  849 
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 1238 

Figure 1. Major subdivisions of the Yilgarn Craton, Western Australia, showing the distribution of 1239 

greenstone belts and base metal occurrences (excluding those associated with Ni sulfide 1240 

mineralization) (after Hollis et al., 2015). Significant VHMS resources, greenstone belts (green) and 1241 

base metal occurrences discussed in the text are labelled. Domains: B, Boorara; C, Coolgardie; O, Ora 1242 

Banda; G, Gindalbie. The box shows the location of Figure 2. GB, greenstone belt; MB, metamorphic 1243 

belt.  1244 

 1245 



Figure 2. Regional Nd and Pb isotope variations of the Yilgarn Craton. (a) Nd-depleted mantle model 1246 

(NdDM) age map of the northern Yilgarn Craton (after Champion & Cassidy, 2007; Czarnota et al., 1247 

2010). Terrane boundaries (white dashed lines) and base metal localities are identical to those shown 1248 

in Figure 1. (b) Nd2DM map of Huston et al. (2014) for the central Kalgoorlie and Kurnalpi terranes – 1249 

box of Figure 3a. (c) µ map of Huston et al. (2014) for the central Kalgoorlie and Kurnalpi terranes. µ  1250 

represents 238U/204Pb integrated to the present, with values calculated from galena and lead telluride 1251 

(altaite) Pb isotope data from VHMS and lode Au deposits of the EGS (described in Huston et al., 1252 

2005, 2014). Variations in µ can be caused by fractionation of U and Pb in the source region and/or 1253 

mixing between isotopically distinct reservoirs (such as an evolved crustal source and juvenile mantle 1254 

sources). Juvenile Pb isotope characteristics (low µ at Teutonic Bore correspond to a narrow, linear 1255 

zone of younger granite T2DM model ages. This was interpreted as a zone of extension by Huston et 1256 

al. (2005, 2014), characterized by more juvenile basement.  1257 

  1258 

Figure 3. Stratigraphy of the Kalgoorlie and Kurnalpi terranes, Eastern Goldfields Superterrane. (a) 1259 

Stratigraphic scheme for the Eastern Goldfields Superterrane for rocks younger than ca. 2.72 Ga (after 1260 

Czarnota et al., 2010). References for U-Pb zircon ages of HFSE-enriched granitic rocks are given in 1261 

Hollis et al. (2015). Main periods of VHMS mineralization: 1, Anaconda, Nimbus; 2, Teutonic Bore, 1262 

Jaguar, Bentley, King/Erayinia, Jungle Pool base metal occurrence. Localities: BW, Bore Well; J, 1263 

Jeedamya; LB, Liberty Bore; M, Melita; MM, Murrin Murrin (i.e. Anaconda); SW, Spring Well; TB, 1264 

Teutonic Bore-Jaguar-Bentley; WW, Welcome Well. (b) Detailed stratigraphic correlation for the 1265 

Kambalda Sequence in the Kalgoorlie Terrane (after Hayman et al., 2015b). DCB, Devon Consols 1266 

Basalt; LB, Lunnon Basalt; PB, Paringa Basalt. 1267 

 1268 

Figure 4. Regional geological map of the Nimbus area based on 1:500 000 scale GSWA regional 1269 

mapping (GeoVIEW at ww.dmp.wa.gov.au). The position of distal hole BODH015 is also indicated. 1270 

 1271 

Figure 5. (a) Geological map of the Nimbus area (modified from Marjoribanks, 2012; and 1272 

unpublished MacPhersons company reports). (b) Plan view of the mineralized lenses, diamond 1273 



drillholes and two open pits at Nimbus. Lenses of Ag mineralization are shown in silver and Zn 1274 

mineralization in purple. (c) Three dimensional block model showing the multiple, steeply dipping 1275 

and stacked lenses of primary sulfide mineralization at Nimbus.  The depth of the Discovery Pit is 1276 

approximately 90m. 1277 

  1278 

Figure 6. Representative photographs of the main lithologies described herein. (a) Grading in finely 1279 

bedded mudstone and sandstone from drillhole NBDH010. (b) One of several thick graded beds of 1280 

interbedded mudstone and sandstone in the upper part of distal drillhole BODH015. (c) Cross-bedded 1281 

quartz rich volcanic sandstones from the lower part of drillhole BODH015. (d-e) Polymict volcanic 1282 

conglomerates with a variably graphitic and dacitic matrix. (f) Silicified coherent dacite cut by fine 1283 

stringers of sericite. (g) Blocky, weakly mineralized monomict dacite breccia with a poorly developed 1284 

and partially replaced matrix. (h) Quench fragmented monomict dacite breccia with a well-developed 1285 

matrix altered to quartz-chlorite-sericite. (i) Peperitic contact between mudstone and carbonate-altered 1286 

basalt.  (j) Mafic hyaloclastite. (k) Well-developed varioles in basalt. (l) Polymict volcanic breccias 1287 

from the top of drillhole BOD202 (associated with the Western basalt). Arrows denote clasts of 1288 

varying composition. (m) Silicified and pyritic mudstone. (n) Polymict volcanic breccia from drillhole 1289 

BODH015 containing clasts of mudstone, spinifex-textured komatiite and basalt (denoted by arrows). 1290 

(o) Monomict volcanic breccia associated with komatiite flows (p) in distal drillhole BODH015. Core 1291 

photographs from drillholes: NBDH010 (Fig. 6a,d-f,i-k,m), BODH015 (Fig. 6b-c,n-p), NBDH035 1292 

(Fig. 6g-h), BOD202 (Fig. 6l).  1293 

 1294 

Figure 7. Downhole lithogeochemical profile of diamond drillhole NBDH010. Sudden shifts in 1295 

mobile elements K2O and CaO correspond with zones of intense sericite and carbonate alteration.  1296 

 1297 

Figure 8. Representative photographs of the main styles of alteration present at Nimbus. (a) Saprock 1298 

at the top of drillhole NBDH010 preserving relict volcanic textures and lithic fragments. (b) Weakly 1299 

altered and silicified coherent quartz-feldspar phyric dacite. (c) Intensely silicified coherent dacite. (d)  1300 

Silica-sericite-carbonate altered dacite with a foliation imparted by abundant fine sericite and 1301 



carbonate. (e) Zones of intense chloritic alteration and sericitic alteration in dacite. (f) Dacite 1302 

pseudobreccia with silica-sericite-carbonate altered domains surrounded by intensely sericite altered 1303 

domains. Note the progressive alteration of the ‘clasts’. (g) Foliated fuchsitic pseudobreccia with 1304 

chloritic patches surrounding domains of intensely silica-sericite altered dacite. (h) Pseudobrecciated 1305 

dacite near the contact with the Northeast basalt in NBDH010. Apparent clasts of silica-sericite altered 1306 

dacite are surrounded by a network of chlorite, fuchsite and sericite. (i) Hydrothermal silica filling 1307 

fractures in a silica-sericite altered dacite. (j) Intensely silicified dacite partially replaced by pyrite and 1308 

cut by sericite veinlets. (k) Altered monomict dacite breccia with quartz-carbon altered dacite clasts 1309 

in an altered matrix dominated by fine chlorite-carbonate-quartz. Some spots of pyrite are present and 1310 

possible patches of carbonaceous mudstone. (l) Dolomite altered metabasalt. Core photographs from 1311 

drillholes: NBDH010 (Fig. 8a,c-d,h), BOD202 (Fig. 8b,e-g,i-j,l), NBDH035 (Fig. 8k). Mineralogy: 1312 

Chlor, chlorite; Dol, dolerite; Fsp, feldspar (altered); Grap, graphite; Plagio, plagioclase; Pyr, pyrite; 1313 

Qtz, quartz; Ser, sericite. 1314 

 1315 

Figure 9. Representative photographs of the main styles of alteration present at Nimbus. (a) Saprock 1316 

at the top of drillhole NBDH010 preserving relict volcanic textures and lithic fragments. (b) Weakly 1317 

altered and silicified coherent quartz-feldspar phyric dacite. (c) Intensely silicified coherent dacite. (d)  1318 

Silica-sericite-carbonate altered dacite with a foliation imparted by abundant fine sericite and 1319 

carbonate. (e) Zones of intense chloritic alteration and sericitic alteration in dacite. (f) Dacite 1320 

pseudobreccia with silica-sericite-carbonate altered domains surrounded by intensely sericite altered 1321 

domains. Note the progressive alteration of the ‘clasts’. (g) Foliated fuchsitic pseudobreccia with 1322 

chloritic patches surrounding domains of intensely silica-sericite altered dacite. (h) Pseudobrecciated 1323 

dacite near the contact with the Northeast basalt in NBDH010. Apparent clasts of silica-sericite altered 1324 

dacite are surrounded by a network of chlorite, fuchsite and sericite. (i) Hydrothermal silica filling 1325 

fractures in a silica-sericite altered dacite. (j) Intensely silicified dacite partially replaced by pyrite and 1326 

cut by sericite veinlets. (k) Altered monomict dacite breccia with quartz-carbon altered dacite clasts 1327 

in an altered matrix dominated by fine chlorite-carbonate-quartz. Some spots of pyrite are present and 1328 

possible patches of carbonaceous mudstone. (l) Dolomite altered metabasalt. Core photographs from 1329 



drillholes: NBDH010 (Fig. 9a,c-d,h), BOD202 (Fig. 9b,e-g,i-j,l), NBDH035 (Fig. 9k). Mineralogy: 1330 

Chlor, chlorite; Dol, dolerite; Fsp, feldspar (altered); Grap, graphite; Plagio, plagioclase; Pyr, pyrite; 1331 

Qtz, quartz; Ser, sericite. 1332 

 1333 

Figure 10. Immobile element geochemistry for felsic and mafic rocks from Nimbus. (a) Zr/TiO2 vs 1334 

Nb/Y immobile-element discrimination diagram for volcanic rocks (after Pearce, 1996). Note the 1335 

bimodal nature of the stratigraphy hosting the Nimbus deposit. (b-d) Comparison of mafic rocks to 1336 

data from elsewhere in the Eastern Goldfields Superterrane: Nb vs TiO2, La vs TiO2 and Th vs TiO2. 1337 

All mafic rocks are similar to the ~2.7 Ga Lunnon Basalt and the low-Th suite of Barnes et al. (2012). 1338 

(e-f) VHMS fertility diagrams of Lesher et al. (1986; Fig. 10e) and Hart et al. (2004; Fig. 10f). All 1339 

samples of dacite from Nimbus are calc-alkaline and of FI affinity characterised by low HFSE 1340 

concentrations and high Zr/Y and La/Yb ratios. By contrast, samples from Teutonic Bore and Jaguar 1341 

plot in the FII and FIII fields indicative of VHMS prospective Archaean felsic rocks and shallow 1342 

crustal melting. (g-h) Chondrite normalized REE spider diagrams for mafic/ultramafic and felsic 1343 

samples from Nimbus. (i) Chondrite normalized REE spider diagram for andesites and felsic rocks 1344 

from Teutonic Bore and Jaguar. Data sources: Barnes et al. (2012), Barnes and Van Kranendonk 1345 

(2014), Belford (2010), Hollis et al. (2015), Hollis (unpublished). 1346 

 1347 

Figure 11. Tectonic discrimination diagrams for samples from Nimbus, Teutonic Bore (Hollis, 1348 

unpublished) and the Lunnon, Devon Consols and Paringa basalts of the Kambalda Sequence (Barnes 1349 

et al., 2012). (a) La-Y-Nb diagram of Cabanis and Lecolle (1989) (b) Zr-Y-Ti diagram of Pearce and 1350 

Cann (1973). (c) Th/Yb vs Nb/Yb diagram of Pearce (2008; 2014). (d)TiO2/Yb vs Nb/Yb diagram of 1351 

Pearce (2014). 1352 

 1353 

Figure 12. SHRIMP U-Pb zircon concordia diagrams and weighted mean ages for two samples dated 1354 

from the Nimbus deposit (see Supplementary Table 2 for data). Representative zircon grains are shown 1355 

along with those discussed in the text and selected δ18O data.  Sample NIM011 is from the coherent 1356 



dacite facies under the Discovery Pit (NBDH035, ~291m), whereas SPHGEO1 is from under the East 1357 

Pit (NBDH010, ~285m) (see Fig. 5 for locations). 1358 

 1359 

Figure 13. Zircon δ18O data from NIM011 and SPHGEO1 (Nimbus dacite). (a) δ18O zircon data 1360 

from Nimbus dacites (Supplementary Table 5)  are shown relative to other zircon δ18O data from six 1361 

key settings; Archean cratons, continental flood basalts, intraplate volcanics, rift volcanics, volcanic 1362 

arcs and mid-ocean ridge basalt (MORB). Data for zircons are from the GEOROC database (Sarbas 1363 

and Nohl, 2008; references listed below), Cavosie et al. (2009), Valley et al. (2005) and the database 1364 

of Spencer et al. (2014a; references listed below). All compiled data are provided in Supplementary 1365 

Table 6. The δ18O compilation for whole-rock systems is taken from Bindeman (2008), Valley et al. 1366 

(2005), Muehlenbachs (1998), Eiler (2001), Hoefs (2008), Sharp (2007), Arthur et al. (1983), 1367 

Gregory and Taylor (1981), Land and Lynch (1996), Shields and Veizer (2002), Knauth and Lowe 1368 

(2003) and Perry Jr and Lefticariu (2003). Thinner data-bars represent single values with an inferred 1369 

10‰ range. Thicker data-bars represent a range of real values. Data for mantle-zircon range (2σ) 1370 

taken from Valley et al. (2005) and shown as the red vertical field. (b) δ18O vs. 207Pb/206Pb age for 1371 

NIM011 and SPHGEO1 shown using individual spot 207Pb/206Pb ages; and (c) δ18O for SPHGEO1; 1372 

and (d) δ18O for NIM011. All error bars are 2σ. Data sources from GEOROC: Bindeman et al. 1373 

(2008), Bindeman and Valley (2000, 2001, 2002, 2003), Chen et al. (2014), Gilliam and Valley 1374 

(1997), Kemp et al. (2006), King et al. (2000), Kitajima et al. (2012), Li et al. (2010), Liu and Zhang 1375 

et al. (2013), Monani and Valley (2001), Siebel et al. (2011), Spencer et al. (2014b), Su et al. (2011), 1376 

Tichomirowa et al. (2013), Upton et al. (1999), Zheng et al. (2008). Data sources listed by Spencer 1377 

et al. (2014a): Arthur et al. (1983), Bolhar et al. (2008), Dai et al. (2011), Gregory and Taylor 1378 

(1981), Heilimo et al. (2013), Jiang et al. (2012), King and Valley (2001), King et al. (1998), Lackey 1379 

et al. (2005, 2006), Land and Lynch (1996), Li et al. (2012), Peck et al. (2001), Perry Jr and 1380 

Lefticariu (2003), Roberts et al. (2013), Shields and Veizer (2002), Wang et al. (2013), Zheng et al. 1381 

(2012). 1382 

 1383 



Figure 14. Pb isotope ratios for samples of galena analysed from Nimbus (see Supplementary Table 1384 

7 for data). Also included is data from epigenetic Au deposits of the Norseman Wiluna Belt and VHMS 1385 

deposits of the Teutonic Bore camp. Data sources: Vaaskoki (1985), Browning et al. (1987), Dahl et 1386 

al. (1987), McNaughton et al. (1990), McNaughton and Groves (1996), Huston et al. (2014). 1387 

 1388 

Figure 15. Schematic model for the evolution of the Nimbus Ag-Zn-(Au) deposit. (a) Cross section 1389 

assuming present-day younging to the NE. The stratigraphy consists of stacked dacitic rocks 1390 

(yellow) with hyaloclastite-rich margins, intruded by broadly coeval, high-level mafic sills (green). 1391 

Both mafic and felsic lithologies have peperitic relationships with less-frequent graphitic mudstones 1392 

(dark grey). (b) Hydrothermal fluids were focussed through hyaloclastite in both mafic and felsic 1393 

lithologies (orange), along lithological boundaries (pink), and through fractures in the coherent 1394 

dacite facies. (c) Massive sulfide mineralization (red) occurs primarily in dacite hyaloclastite 1395 

associated with intense quartz-sericite±chlorite alteration (orange). Zones of stringer sulfides occur 1396 

in the coherent dacite facies characterized by weaker quartz-sericite-carbonate alteration (grey). 1397 

Mafic rocks are dominated by quartz-carbonate-chlorite and disseminated sulfides. Mafic-felsic 1398 

contacts are characterized by abundant quartz-sericite-carbonate-fuchsite±chlorite (pale green). 1399 

Weakly altered dacitic rocks (yellow) are characterised by silicification and/or albitic alteration. The 1400 

interpreted position of the Discovery and East pits are shown, along with drillhole NBHD010 1401 

(discounting the effects of regional deformation).  1402 

 1403 

Supplementary Table 1. Whole rock geochemical data for samples analysed from the Nimbus 1404 

stratigraphy and regional drillhole BODH015. 1405 

Supplementary Table 2. SHRIMP U-Pb zircon data for samples of dacite from the Nimbus 1406 

stratigraphy. 1407 

Supplementary Table 3. SHRIMP U-Pb zircon data for primary and secondary standards. 1408 

Supplementary Table 4.  δ18O data for primary (TEMORA) and secondary (M257 and OGC) 1409 

standards collected during the analytical session. 1410 

Supplementary Table 5.  δ18O data for dated zircons from NIM011 and SPHGEO1. 1411 



Supplementary Table 6. Compiled global database for O isotopes. 1412 

Supplementary Table 7. Pb isotopic data normalised to common lead standard NIST 981. The result 1413 

is the average of three datasets.  1414 

 1415 

Sample ID Lithology 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

=238U/204Pb 

Abitibi-Wawa 

NBDH013_3

34m 

Dacite with disseminated 

and stringer sphalerite-

pyrite. Narrow, coarsely 

crystalline bands of 

galena and chalcopyrite 

are also present. 

13.49 14.68 33.28 

8.34 

 

 

NBDH035_1

75m 

Dacite with stringers of 

high- and low-Fe 

sphalerite, pyrite, 

chalcopyrite and galena. 

13.49 14.68 33.27 8.35 

  1416 

 1417 

Supplementary Figure 1. Representative photomicrographs of hydrothermal alteration at Nimbus (all 1418 

images except Fig. 1i are under crossed polarised light). (a) Sample 183348: Weakly quartz-sericite-1419 

carbonated altered quartz-feldspar porphyritic dacite. Randomly oriented feldspar phenocrysts are well 1420 

preserved, though slightly dusted with sericite. (b) Sample 183354: Sheared moderately sericite-1421 

quartz-(carbonate) altered quartz-feldspar porphyritic dacite. (c) Sample 183355: Quartz-carbonate-1422 

(sericite) altered quartz-feldspar porphyritic dacite. The groundmass is extensively replaced by quartz 1423 

and carbonate with lesser sericite and patches of epidote and chlorite. (d) Sample 182575: Sheared 1424 

moderately sericite-quartz-(carbonate) altered quartz-feldspar porphyritic dacite similar to Figure 10b, 1425 

with extensive pyrite mineralization and coarse patches of carbonate. (e) Sample 183353: Quartz-1426 



carbonate-(sericite) altered quartz-feldspar porphyritic dacite. Pyrite stringers are brecciated parallel 1427 

to the deformation fabric and sericite veinlets. (f) Sample 182587: Mafic hyaloclastite with well-1428 

preserved primary igneous textures in clasts. The groundmass is extensively altered to dolomite-1429 

chlorite-quartz. Fine pyrite and sphalerite are disseminated throughout the matrix. (g) Sample 182567: 1430 

Intensely dolomite-altered mafic rock sampled from the Western Basalt. The groundmass comprises 1431 

a fine mixture of dolomite-chlorite-quartz and separates coarse patches of dolomite. (h) Sample 1432 

183343: Moderately dolomite-chlorite-quartz altered coherent mafic rock from the Northeast Basalt. 1433 

Minor patches of pyrite and epidote occur throughout the groundmass. Relic plagioclase laths are still 1434 

apparent. (i) Sample 182583: Silicified and quartz-brecciated, pyritic mudstone. Thin bands of 1435 

recrystallized quartz with pyrite alternated with graphitic mudstone. All samples are from drillhole 1436 

NBDH010, except Figures 2d,g (which are from drillhole BOD202). 1437 

 1438 

Supplementary Figure 2. U-Pb zircon concordia for standard OGC.  1439 

 1440 
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