1,498 research outputs found
Laplace's rule of succession in information geometry
Laplace's "add-one" rule of succession modifies the observed frequencies in a
sequence of heads and tails by adding one to the observed counts. This improves
prediction by avoiding zero probabilities and corresponds to a uniform Bayesian
prior on the parameter. The canonical Jeffreys prior corresponds to the
"add-one-half" rule. We prove that, for exponential families of distributions,
such Bayesian predictors can be approximated by taking the average of the
maximum likelihood predictor and the \emph{sequential normalized maximum
likelihood} predictor from information theory. Thus in this case it is possible
to approximate Bayesian predictors without the cost of integrating or sampling
in parameter space
Multipole correlations in low-dimensional f-electron systems
By using a density matrix renormalization group method, we investigate the
ground-state properties of a one-dimensional three-orbital Hubbard model on the
basis of a j-j coupling scheme. For , where is a parameter
to control cubic crystalline electric field effect, one orbital is itinerant,
while other two are localized. Due to the competition between itinerant and
localized natures, we obtain orbital ordering pattern which is sensitive to
, leading to a characteristic change of quadrupole state
into an incommensurate structure. At , all the three orbitals are
degenerate, but we observe a peak at in quadrupole
correlation, indicating a ferro-orbital state, and the peak at in
dipole correlation, suggesting an antiferromagnetic state. We
also discuss the effect of octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29,
2005, Tokai
Recommended from our members
Translation of Anticancer Efficacy From Nonclinical Models to the Clinic
Mouse cancer models have provided critical insights into tumor biology; however, clinical translation of these findings has been challenging. This perspective posits that factors impacting on successful translation start with limitations in capturing human cancer pathophysiology and end with challenges in generating robust translatable preclinical end points. A comprehensive approach that considers clinically relevant mouse models with both an integrated biomarker strategy and a complementary modeling and simulation effort will strengthen the current oncology drug development paradigm
Double-Exchange Ferromagnetism and Orbital-Fluctuation-Induced Superconductivity in Cubic Uranium Compounds
A double-exchange mechanism for the emergence of ferromagnetism in cubic
uranium compounds is proposed on the basis of a - coupling scheme. The
idea is {\it orbital-dependent duality} of electrons concerning itinerant
and localized states in the cubic structure. Since
orbital degree of freedom is still active in the ferromagnetic phase,
orbital-related quantum critical phenomenon is expected to appear. In fact,
odd-parity p-wave pairing compatible with ferromagnetism is found in the
vicinity of an orbital ordered phase. Furthermore, even-parity d-wave pairing
with significant odd-frequency components is obtained. A possibility to observe
such exotic superconductivity in manganites is also discussed briefly.Comment: 4 pages, 4 figures. To appear in J. Phys. Soc. Jp
Superconductivity in the Correlated Pyrochlore Cd_2Re_2O_7
We report the observation of superconductivity in high-quality
CdReO single crystals with room-temperature pyrochlore structure.
Resistivity and ac susceptibility measurements establish an onset transition
temperature T = 1.47 K with transition width T = 0.25
K. In applied magnetic field, the resistive transition shows a type-II
character, with an approximately linear temperature-dependence of the upper
critical field H. The bulk nature of the superconductivity is confirmed
by the specific heat jump with C = 37.9 mJ/mol-K. Using the
value extracted from normal-state specific heat data, we obtain
C/T = 1.29, close to the weak coupling BCS value. In the
normal state, a negative Hall coefficient below 100 K suggests electron-like
conduction in this material. The resistivity exhibits a quadratic T-dependence
between 2 and 60 K, i.e., +AT, indicative of Fermi-liquid
behavior. The values of the Kadowaki-Woods ratio A/ and the Wilson
ratio are comparable to that for strongly correlated materials.Comment: 4 pages, 5 figure
Soil Carbon in Agroforestry Systems: An Unexplored Treasure?
Soil organic matter (SOM), which contains more reactive organic carbon (C) than any other single terrestrial pool, plays a major role in determining C storage in ecosystems and regulating atmospheric concentrations of carbon dioxide (CO2)^1^. Agroforestry, the practice of growing trees and crops in interacting combinations on the same unit of land^2^, primarily by resource-poor smallholder farmers in developing countries, is recognized as a strategy for soil carbon sequestration (SCS) under the Clean Development Mechanism (CDM) of the Kyoto Protocol^3^. The understanding about C storage and dynamics under agroforestry systems (AFS), however, is minimal. Our studies under various AFS in diverse ecological conditions in five countries showed that tree-based agricultural systems, compared to treeless systems, stored more C in deeper soil layers up to 1 m depth under comparable conditions. More C is stored in soil near the tree than away from the tree; higher SOC content is associated with higher species richness and tree density; and C3 plants (trees) contribute to more C in the silt- + clay-sized (<53 µm) fractions that constitute more stable C, than C4 plants, in deeper soil profiles4 - 8. These results provide clear indications of the possibilities for climate change mitigation through SCS in AFS, and opportunities for economic benefit - through carbon trading - to millions of smallholder farmers in developing countries
Effective Crystalline Electric Field Potential in a j-j Coupling Scheme
We propose an effective model on the basis of a - coupling scheme to
describe local -electron states for realistic values of Coulomb interaction
and spin-orbit coupling , for future development of microscopic
theory of magnetism and superconductivity in -electron systems, where
is the number of local electrons. The effective model is systematically
constructed by including the effect of a crystalline electric field (CEF)
potential in the perturbation expansion in terms of . In this paper,
we collect all the terms up to the first order of . Solving the
effective model, we show the results of the CEF states for each case of
=25 with symmetry in comparison with those of the Stevens
Hamiltonian for the weak CEF. In particular, we carefully discuss the CEF
energy levels in an intermediate coupling region with in the order
of 0.1 corresponding to actual -electron materials between the and
- coupling schemes. Note that the relevant energy scale of is the
Hund's rule interaction. It is found that the CEF energy levels in the
intermediate coupling region can be quantitatively reproduced by our modified
- coupling scheme, when we correctly take into account the corrections in
the order of in addition to the CEF terms and Coulomb interactions
which remain in the limit of =. As an application of the
modified - coupling scheme, we discuss the CEF energy levels of filled
skutterudites with symmetry.Comment: 12 pages, 7 figures. Typeset with jpsj2.cl
- …