31 research outputs found
Impact of changing the measles vaccine vial size on Niger's vaccine supply chain: a computational model
<p>Abstract</p> <p>Background</p> <p>Many countries, such as Niger, are considering changing their vaccine vial size presentation and may want to evaluate the subsequent impact on their supply chains, the series of steps required to get vaccines from their manufacturers to patients. The measles vaccine is particularly important in Niger, a country prone to measles outbreaks.</p> <p>Methods</p> <p>We developed a detailed discrete event simulation model of the vaccine supply chain representing every vaccine, storage location, refrigerator, freezer, and transport device (e.g., cold trucks, 4 × 4 trucks, and vaccine carriers) in the Niger Expanded Programme on Immunization (EPI). Experiments simulated the impact of replacing the 10-dose measles vial size with 5-dose, 2-dose and 1-dose vial sizes.</p> <p>Results</p> <p>Switching from the 10-dose to the 5-dose, 2-dose and 1-dose vial sizes decreased the average availability of EPI vaccines for arriving patients from 83% to 82%, 81% and 78%, respectively for a 100% target population size. The switches also changed transport vehicle's utilization from a mean of 58% (range: 4-164%) to means of 59% (range: 4-164%), 62% (range: 4-175%), and 67% (range: 5-192%), respectively, between the regional and district stores, and from a mean of 160% (range: 83-300%) to means of 161% (range: 82-322%), 175% (range: 78-344%), and 198% (range: 88-402%), respectively, between the district to integrated health centres (IHC). The switch also changed district level storage utilization from a mean of 65% to means of 64%, 66% and 68% (range for all scenarios: 3-100%). Finally, accounting for vaccine administration, wastage, and disposal, replacing the 10-dose vial with the 5 or 1-dose vials would increase the cost per immunized patient from 0.71US and $1.26US, respectively.</p> <p>Conclusions</p> <p>The switch from the 10-dose measles vaccines to smaller vial sizes could overwhelm the capacities of many storage facilities and transport vehicles as well as increase the cost per vaccinated child.</p
Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea
Since the late 1990s, the meteorological observatory established in Anmyeondo (36.5382° N, 126.3311° E, and 30 m above mean sea level) has been monitoring several greenhouse gases such as CO_2, CH_4, N_2O, CFCs, and SF_6 as a part of the Global Atmosphere Watch (GAW) Program. A high resolution ground-based (g-b) Fourier transform spectrometer (FTS) was installed at this observation site in 2013 and has been operated within the frame work of the Total Carbon Column Observing Network (TCCON) since August 2014. The solar spectra recorded by the g-b FTS cover the spectral range 3800 to 16 000 cm^(−1) at a resolution of 0.02 cm^(−1). In this work, the GGG2014 version of the TCCON standard retrieval algorithm was used to retrieve total column average CO_2 and CH_4 dry mole fractions (XCO_2, XCH_4) and from the FTS spectra. Spectral bands of CO_2 (at 6220.0 and 6339.5 cm^(−1) center wavenumbers, CH_4 at 6002 cm^(−1) wavenumber, and O_2 near 7880 cm^(−1)) were used to derive the XCO_2 and XCH_4. In this paper, we provide comparisons of XCO_2 and XCH_4 between the aircraft observations and g-b FTS over Anmyeondo station. A comparison of 13 coincident observations of XCO_2 between g-b FTS and OCO-2 (Orbiting Carbon Observatory) satellite measurements are also presented for the measurement period between February 2014 and November 2017. OCO-2 observations are highly correlated with the g-b FTS measurements (r^2 = 0.884) and exhibited a small positive bias (0.189 ppm). Both data set capture seasonal variations of the target species with maximum and minimum values in spring and late summer, respectively. In the future, it is planned to further utilize the FTS measurements for the evaluation of satellite observations such as Greenhouse Gases Observing Satellite (GOSAT, GOSAT-2). This is the first report of the g-b FTS observations of XCO_2 species over the Anmyeondo station
Measurement report: Atmospheric CH<sub>4</sub> at regional stations of the Korea Meteorological Administration–Global Atmosphere Watch Programme: measurement, characteristics, and long-term changes of its drivers
To quantify CH4Â emissions at policy-relevant spatial scales, the Korea Meteorological Administration (KMA) started monitoring its
atmospheric levels in 1999 at Anmyeondo (AMY) and expanded monitoring to Jeju Gosan Suwolbong (JGS) and Ulleungdo (ULD) in 2012. The monitoring
system consists of a cavity ring-down spectrometer (CRDS) and a new cryogenic drying method, with a measurement uncertainty (68 % c.i. (confidence interval))
of ± 0.7–0.8 ppb. To determine the regional characteristics of CH4 at each KMA station, we assessed the CH4 level
relative to local background (CH4xs), analyzed local surface winds and CH4 with bivariate polar plots, and investigated
CH4 diurnal cycles. We also compared the CH4 levels measured at KMA stations with those measured at the Mt. Waliguan (WLG)
station in China and Ryori (RYO) station in Japan. CH4xs followed the order AMY (55.3 ± 37.7 ppb) > JGS
(24.1 ± 10.2 ppb) > ULD (7.4 ± 3.9 ppb). Although CH4 was observed in well-mixed air at AMY, it was higher
than at other KMA stations, indicating that it was affected not only by local sources but also by distant air masses. Annual mean CH4 was
highest at AMY among all East Asian stations, while its seasonal amplitude was smaller than at JGS, which was strongly affected in the summer by
local biogenic activities. From the long-term records at AMY, we confirmed that growth rate increased by 3.3 ppb yr−1 during 2006/2010
and by 8.3 ppb yr−1 from 2016 to 2020, which is similar to the global trend. Studies indicated that the recent global accelerated
CH4-growth rate was related to biogenic sources. However, δ13CH4 indicates that the CH4 trend in East Asia is
derived from both biogenic and fossil fuel sources from 2006 to 2020. We confirmed that long-term high-quality data can help understand changes in
CH4Â emissions in East Asia.</p
Retrieval and satellite intercomparison of O<sub>3</sub> measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia
Since May 2009, high-resolution Fourier Transform Infrared (FTIR) solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level), Ethiopia. The vertical profiles and total column amounts of ozone (O<sub>3</sub>) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O<sub>3</sub> retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O<sub>3</sub> from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR) profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Tropospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounding (AIRS) and Global Ozone Monitoring Experiment (GOME-2) instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O<sub>3</sub> VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period
Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea
Since the late 1990s, the meteorological observatory established in Anmyeondo (36.5382° N, 126.3311° E, and 30 m above mean sea level) has been monitoring several greenhouse gases such as CO2, CH4, N2O, CFCs, and SF6 as a part of the Global Atmosphere Watch (GAW) Program. A high resolution ground-based (g-b) Fourier transform spectrometer (FTS) was installed at this observation site in 2013 and has been operated within the frame work of the Total Carbon Column Observing Network (TCCON) since August 2014. The solar spectra recorded by the g-b FTS cover the spectral range 3800 to 16 000 cm−1 at a resolution of 0.02 cm−1. In this work, the GGG2014 version of the TCCON standard retrieval algorithm was used to retrieve total column average CO2 and CH4 dry mole fractions (XCO2, XCH4) and from the FTS spectra. Spectral bands of CO2 (at 6220.0 and 6339.5 cm−1 center wavenumbers, CH4 at 6002 cm−1 wavenumber, and O2 near 7880 cm−1 ) were used to derive the XCO2 and XCH4. In this paper, we provide comparisons of XCO2 and XCH4 between the aircraft observations and g-b FTS over Anmyeondo station. A comparison of 13 coincident observations of XCO2 between g-b FTS and OCO-2 (Orbiting Carbon Observatory) satellite measurements are also presented for the measurement period between February 2014 and November 2017. OCO-2 observations are highly correlated with the g-b FTS measurements (r2 = 0.884) and exhibited a small positive bias (0.189 ppm). Both data set capture seasonal variations of the target species with maximum and minimum values in spring and late summer, respectively. In the future, it is planned to further utilize the FTS measurements for the evaluation of satellite observations such as Greenhouse Gases Observing Satellite (GOSAT, GOSAT-2). This is the first report of the g-b FTS observations of XCO2 species over the Anmyeondo station