114 research outputs found

    Application of synthetic solid culture medium to improve the detection of antimicrobial drug residues in foodstuffs

    Get PDF
    A selective synthetic solid minimal medium (BS agar) was developed to detect antimicrobial drug-residues in foodstuffs using Bacillus subtilis indicator culture. This medium contains an ammonium salt as nitrogen source and either glucose or sodium pyruvate as carbon sources.Its selectivity is based on the fact that Bacillus subtilis is still able to grow if the minimal medium consists of simple inorganic substances as nitrogen sources, and glucose or pyruvate as carbon supply. Using these new synthetic media for microbiological assays assessing certain antimicrobials, the diameter of the inhibition zones were 1.4–4 times wider than on the Mueller-Hinton agar.The advantages of the BS agars are their standard compositions, the absence of inhibitors, the reproducible quality and the low costs

    Online Meta-learning by Parallel Algorithm Competition

    Full text link
    The efficiency of reinforcement learning algorithms depends critically on a few meta-parameters that modulates the learning updates and the trade-off between exploration and exploitation. The adaptation of the meta-parameters is an open question in reinforcement learning, which arguably has become more of an issue recently with the success of deep reinforcement learning in high-dimensional state spaces. The long learning times in domains such as Atari 2600 video games makes it not feasible to perform comprehensive searches of appropriate meta-parameter values. We propose the Online Meta-learning by Parallel Algorithm Competition (OMPAC) method. In the OMPAC method, several instances of a reinforcement learning algorithm are run in parallel with small differences in the initial values of the meta-parameters. After a fixed number of episodes, the instances are selected based on their performance in the task at hand. Before continuing the learning, Gaussian noise is added to the meta-parameters with a predefined probability. We validate the OMPAC method by improving the state-of-the-art results in stochastic SZ-Tetris and in standard Tetris with a smaller, 10×\times10, board, by 31% and 84%, respectively, and by improving the results for deep Sarsa(λ\lambda) agents in three Atari 2600 games by 62% or more. The experiments also show the ability of the OMPAC method to adapt the meta-parameters according to the learning progress in different tasks.Comment: 15 pages, 10 figures. arXiv admin note: text overlap with arXiv:1702.0311

    Synthetic Culture Media Evaluated for the Detection of Coliform Bacteria in Milk, Cheese and Egg Melange

    Full text link
    Simple synthetic culture media of liquid and solid form (X broth and X agar) were tested for selective isolation of coliform bacteria. Selectivity is based on the ability of coliform bacteria to grow when the minimal medium contains simple inorganic substances as nitrogen and carbon supply. Selectivity of the media was tested by inoculation of pure cultures of different microbes belonging to the genera of Staphylococcus, Bacillus and Pseudomonas and the family Enterobacteriaceae and was found to be complete in this range. The comparative investigation of milk, camembert cheese and egg melange samples in the traditional and new media proved good applicability of X broth and X agar for an effective and selective detection of coliform bacteria. When testing pasteurized milk samples, X agar detected coliforms in significantly higher counts than violet red-bile-lactose agar

    Chemoenzymatic microfluidic cascade reaction: Coupling of a diels-alder reaction with a transketolase-catalyzed reaction

    Get PDF
    A chemoenzymatic microfluidic cascade reaction is demonstrated for the first time, where a Diels-Alder reaction is followed by a transketolase reaction, for the synthesis of 3,4-dimethylcyclohex-3-ene-2’-keto-1’,3’- propanediols, which are used as scaffolds for a number of interesting pharmaceutical compounds. For an efficient organic synthesis, an enzymatic reaction would be advantageous, as it would minimize the number of process steps by eliminating the need for protective chemistry [1]. However, most catalysts and reactions conditions used with DA reactions are not compatible with a subsequent enzymatic reaction (issues revolve e.g. around solvent compatibility, differing reaction rates, and mis-match of pH). We used the spatial confinement of reactions afforded by cascaded microreactors, which has been well established for enzyme-enzyme reactions [2], to overcome these challenges and to achieve a chemoenzymatic reaction in continuous flow. Each reaction was optimized individually or in a step-wise synthesis, considering solvents and catalyst combinations, before being coupled in continuous flow

    Effect of Polarized Light Treatment on Milk Production and Milk Somatic Cell Count of Cows

    Full text link
    Treatment with linearly polarized light (LPL) is a widely used and recognized therapeutic method in human medicine for healing wounds, ulcers and a variety of other dermatological problems. Polarized light mobilizes the inadequately functioning defence mechanisms of the human body. The aim of the present experiment was to investigate the effect of LPL treatment on the udder of milking cows. Before the start of treatment, there was no significant difference between cows to be treated with LPL and the control cows in mean somatic cell counts (SCC) of milk samples taken separately by udder quarter and in the mean milk yield. The LPL treatment lasted for 20 min and was performed twice a day over a period of one month. Before treatment, the mean SCC of milk was 3.47 × 105 ± 910 in the group to be treated and 4.07 × 105 ± 920 in the control group. In a six-week period immediately after treatment, the mean SCC of the treated and the control group was 1.32 × 105 ± 825 and 2.63 × 105 ± 825, indicating a significant difference in favour of the treated group. Before the LPL treatment, the milk yield of cows in the group to be treated was 25.77 ± 1.2 kg/ day, while that of the control cows was 27.30 ± 1.4 kg/day. In a six-week period after treatment, the milk yield of cows in the treated and control groups was 28.83 ± 1.5 kg/day and 25.48 ± 1.4 kg/day, respectively. There is a significant difference between these values in favour of the treated group. The results show that a regular LPL treatment of the udder of cows can significantly reduce the SCC of milk and significantly increase the milk yield. The treatment can be applied during lactation without interfering with the milking regime

    Confinement effect on hydrolysis in small lipid vesicles

    Get PDF
    In living organisms most chemical reactions take place within the confines of lipid-membrane bound compartments, while confinement within the bounds of a lipid membrane is thought to be a key step in abiogenesis. In previous work we demonstrated that confinement in the aqueous cavity of a lipid vesicle affords protection against hydrolysis, a phenomenon that we term here confinement effect (Ce) and that we attributed to the interaction with the lipid membrane. Here, we show that both the size and the shape of the cavity of the vesicle modulate the Ce. We link this observation to the packing of the lipid following changes on membrane curvature, and formulate a mathematical model that relates the Ce with the radius of a spherical vesicle and the packing parameter of the lipids. These results suggest that the shape of the compartment where a molecule is located plays a major role in controlling chemical reactivity of non-enzymatic reactions. Moreover, the mathematical treatment we propose offers a useful tool for the design of vesicles with predictable reaction rates of the confined molecules, e.g., drug delivery vesicles with confined prodrugs. The results also show that a crude form of signal transduction, devoid of complex biological machinery, can be achieved by any external stimuli that drastically changes the structure of the membrane, like the osmotic shocks used in the present work

    Removal and Dispersal of Biofluid Films by Powered Medical Devices: Modelling Infectious Agent Spreading in Dentistry

    Get PDF
    Summary Medical procedures can disperse infectious agents and spread disease. Particularly, dental procedures may pose a high risk of disease transmission as they use high-powered instruments operating within the oral cavity that may contain infectious microbiota or viruses. Here we assess the ability of powered dental devices in removing the biofluid films and identified mechanical, hydrodynamic, and aerodynamic forces as the main underlying mechanisms of removal and dispersal processes. Our results indicate that potentially infectious agents can be removed and dispersed immediately after dental instrument engagement with the adherent biofluid film while the degree of their dispersal is rapidly depleted due to removal of the source and dilution by the coolant water. We found that droplets, created by high-speed drill interactions typically travel ballistically while aerosol-laden air tends to flow as a current over surfaces. Our mechanistic investigation offers plausible routes for reducing the spread of infection during invasive medical procedures

    Bayesian reinforcement learning with exploration

    No full text
    We consider a general reinforcement learning problem and show that carefully combining the Bayesian optimal policy and an exploring policy leads to minimax sample-complexity bounds in a very general class of (history-based) environments. We also prove lower bounds and show that the new algorithm displays adaptive behaviour when the environment is easier than worst-case
    • …
    corecore