19 research outputs found

    Crescimento e sobrevivência da ostra de fundo, Crassostrea gasar, cultivada no Nordeste e Sul do Brasil.

    Get PDF
    This study evaluated the growth, survival, and time to reach the minimum market size (50 mm shell height) of the bottom oyster Crassostrea gasar with seeds produced at hatchery. Culture areas were located in the States of Maranhão [1-Morro do Meio (MM); 2-Torto (TT)] and Santa Catarina [1-São Francisco do Sul (SFS); 2-Florianópolis (SB)]. Eight thousand seeds were transferred to each location and cultivated from June 2012 to July 2013. Oyster growth in Santa Catarina was bigger than in Maranhão..

    Carotenoid extraction from the gonad of the scallop Nodipecten nodosus (Linnaeus, 1758) (Bivalvia: Pectinidae)

    Get PDF
    In marine bivalve mollusks, unsaturated molecules called carotenoids are present in the natural diet and play an important role in different biological process, especially in reproduction. In order to gain more insights into these compounds in Nodipecten nodosus it was necessary to develop a suitable protocol for extraction of carotenoids from the gonads. Female gonads of cultured scallops (75 mm length) were lyophilized and macerated in liquid N2. To verify the effect of composition in organosolvents on the extracting solutions, two organic solvents were tested: acetone and hexane (Ac = O:Hex) at four ratios, 1:1, 1:3, 1:5, and 2:3, in four static extraction times: 0, 5, 10, and 15 minutes. Total carotenoids and astaxanthin contents were determined in the crude extracts by UV-visible spectrophotometry and high performance liquid chromatography (HPLC), respectively. Triplicate aliquots of 50 mg were used for each treatment. The results indicated that the best single extraction (0.312 ± 0.016 µg carotenoids/mg) was attained with Ac = O: Hex 1:3, for 15 minutes. Through exhaustive extraction methodology (10x), a superior yield (0.41 ± 0.001 µg carotenoids/mg) was obtained from a gonad sample in comparison to the highest value found for a single extraction. Astaxanthin content was reduced by 8.6% in carotenoid extract preservation assay, i.e., -18 °C, 26 days incubation, under N2 atmosphere

    DiProGB: the dinucleotide properties genome browser

    No full text

    Assessing in vitro combinations of antifungal drugs against yeasts and filamentous fungi: comparison of different drug interaction models.

    No full text
    Contains fulltext : 48405.pdf (publisher's version ) (Closed access)Non-parametric and parametric approaches of two competing zero-interaction theories--the Loewe additivity and the Bliss independence - were evaluated for analyzing the in vitro interactions of various antifungal drugs. Fifty-one data sets, derived from three drug combinations, tested in triplicate against 17 clinical yeast and mold isolates with a two-dimensional checkerboard microdilution technique, were selected to span from strong synergy to strong antagonism. These were analyzed with the standard FIC index model and modern concentration-effect response surface models: the fully parametric model developed by Greco et al. and the 3-D analysis developed by Prichard et al. The FIC index model is subjective, sensitive to experimental errors and resulted in approximated results and variable conclusions depending on the MIC endpoints determined and interpretation endpoints used. By using the MIC-2 endpoint (lowest drug concentration showing 50% of growth) for calculating the FIC indices, problems due to trailing phenomena were reduced and weak interactions could be detected; higher levels of reproducibility and agreement with the other models were achieved using the MIC-0 and MIC-1 (lowest drug concentration showing 10 and 25% of growth, respectively). High reproducibility was achieved in interpreting the FIC indices when the cutoffs of 0.25 and 4 (for single experiments) and the cutoff of 1 (for replicates) were used for defining the limits of additivity/indifference. Although the fully parametric Greco model did not describe precisely the entire response surface of all antifungal drug interactions, it was able to differentiate synergistic from non-synergistic interactions with a non-unit, reproducible, concentration-independent interaction parameter, including its uncertainty, without requiring replication. The Bliss independence based models resulted in mosaics of synergistic and antagonistic combinations, raising questions about the concentration-dependent nature of antifungal drug interaction. The sum of all statistically significant interactions were used as a summary interaction parameter for the entire response surface, concluding synergy or antagonism when it was positive or negative, respectively. The cutoffs of 100% and 200% were used to distinguish weak and moderate interactions, respectively in 12-16 x 8-12 checkerboard formats. Semi-parametric approaches need particular care as experimental errors are not eliminated from the entire response surface
    corecore