85 research outputs found

    The barocaloric effect: A Spin-off of the Discovery of High-Temperature Superconductivity

    Full text link
    Some key results obtained in joint research projects with Alex M\"uller are summarized, concentrating on the invention of the barocaloric effect and its application for cooling as well as on important findings in the field of high-temperature superconductivity resulting from neutron scattering experiments.Comment: 26 pages, 9 figure

    Evidence for competition between the superconducting and the pseudogap state in (BiPb)_2(SrLa)_2CuO_{6+\delta} from muon-spin rotation experiments

    Full text link
    The in-plane magnetic penetration depth \lambda_{ab} in optimally doped (BiPb)_2(SrLa)_2CuO_{6+\delta} (OP Bi2201) was studied by means of muon-spin rotation. The measurements of \lambda_{ab}^{-2}(T) are inconsistent with a simple model of a d-wave order parameter and a uniform quasiparticle weight around the Fermi surface. The data are well described assuming the angular gap symmetry obtained in ARPES experiments [Phys. Rev. Lett {\bf 98}, 267004 (2007)], where it was shown that the superconducting gap in OP Bi2201 exists only in segments of the Fermi surface near the nodes. We find that the remaining parts of the Fermi surface, which are strongly affected by the pseudogap state, do not contribute significantly to the superconducting condensate. Our data provide evidence that high temperature superconductivity and pseudogap behavior in cuprates are competing phenomena.Comment: 5 pages, 3 figure

    Oxygen-isotope effect on the superconducting gap in the cuprate superconductor Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}

    Full text link
    The oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the zero-temperature superconducting energy gap \Delta_0 was studied for a series of Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta} samples (0.0\leq x\leq0.45). The OIE on \Delta_0 was found to scale with the one on the superconducting transition temperature. These experimental results are in quantitative agreement with predictions from a polaronic model for cuprate high-temperature superconductors and rule out approaches based on purely electronic mechanisms.Comment: 5 pages, 3 figure

    Zero-field superfluid density in d-wave superconductor evaluated from the results of muon-spin-rotation experiments in the mixed state

    Full text link
    We report on measurements of the in-plane magnetic penetration \lambda_{ab} in the optimally doped cuprate superconductor (BiPb)_2(SrLa)_2CuO_6+\delta (OP Bi2201) by means of muon-spin rotation (\muSR). We show that in unconventional d−d-wave superconductors (like OP Bi2201), \muSR experiments conducted in various magnetic fields allow to evaluate the zero-field magnetic penetration depth \lambda_0, which relates to the zero-field superfluid density in terms of \rho_s\propto\lambda_0^-2.Comment: 4 pages, 5 figure

    Discrete antiferromagnetic spin-wave excitations in the giant ferric wheel Fe18

    Full text link
    The low-temperature elementary spin excitations in the AFM molecular wheel Fe18 were studied experimentally by inelastic neutron scattering and theoretically by modern numerical methods, such as dynamical density matrix renormalization group or quantum Monte Carlo techniques, and analytical spin-wave theory calculations. Fe18 involves eighteen spin-5/2 Fe(III) ions with a Hilbert space dimension of 10^14, constituting a physical system that is situated in a region between microscopic and macroscopic. The combined experimental and theoretical approach allowed us to characterize and discuss the magnetic properties of Fe18 in great detail. It is demonstrated that physical concepts such as the rotational-band or L&E-band concepts developed for smaller rings are still applicable. In particular, the higher-lying low-temperature elementary spin excitations in Fe18 or AFM wheels in general are of discrete antiferromagnetic spin-wave character.Comment: 16 pages, 10 figure

    Universal observation of multiple order parameters in cuprate superconductors

    Full text link
    The temperature dependence of the London penetration depth \lambda was measured for an untwined single crystal of YBa_2Cu_3O_{7-\delta} along the three principal crystallographic directions (a, b, and c). Both in-plane components (\lambda_a and \lambda_b) show an inflection point in their temperature dependence which is absent in the component along the c-direction (\lambda_c). The data provide convincing evidence that the in-plane superconducting order parameter is a mixture of s+d-wave symmetry whereas it is exclusively s-wave along the c-direction. In conjunction with previous results it is concluded that coupled s+d-order parameters are universal and intrinsic to cuprate superconductors.Comment: 5 pages, 3 figure

    Superfluid Density and Angular Dependence of the Energy Gap inOptimally Doped (BiPb)2(SrLa)2CuO6+ δ

    Get PDF
    We present a muon-spin rotation study of the optimally doped cuprate superconductor (BiPb)2(SrLa)2 CuO6+δ . The measured magnetic field dependence of the in-plane magnetic penetration λ ab suggests superconductivity with a dominant d-wave order parameter. The comparison of the temperature dependence of λ ab with calculations, assuming the angular gap symmetry as obtained from photoemission measurements, is consistent with a partial suppression of the quasi-particle weight towards the anti-nodal region of the Fermi surface. This suggests that the superconducting and the pseudogap state are dominated by different parts of the Fermi surfac

    Strong coupling between Eu2+ spins and Fe2As2 layers in EuFe1.9Co0.1As2 observed with NMR

    Full text link
    A combination of x-ray diffraction, magnetization, and 75As nuclear magnetic resonance (NMR) experiments were performed on single-crystal EuFe1.9Co0.1As2. The strength of the hyperfine interaction between the 75As nuclei and the Eu^(2+) 4f states suggests a strong coupling between the Eu^(2+) moments and the Fe1.9Co0.1As2 layers. Such a strong interlayer coupling may be due to an indirect exchange interaction between the localized Eu^(2+) 4f moments, mediated by the Fe 3d conduction electrons. Magnetic susceptibility as well as 75As-NMR measurements reveal a decrease of the SDW transition temperature to T_SDW = 120 K as a result of Co doping. A change of the slope in the temperature dependence of the NMR frequency of the 75As lower-satellite line was observed at 225 K. At the same temperature also a change of the satellite line shape was found. These changes of the NMR spectra may be caused by the formation of a nematic phase below 225 K in EuFe1.9Co0.1As2.Comment: 8 pages, 7 figure
    • …
    corecore