670 research outputs found

    The pyloric neural circuit of the herbivorous crab Pugettia producta shows limited sensitivity to several neuromodulators that elicit robust effects in more opportunistically feeding decapods

    Get PDF
    Modulation of neural circuits in the crustacean stomatogastric nervous system (STNS) allows flexibility in the movements of the foregut musculature. The extensive repertoire of such resulting motor patterns in dietary generalists is hypothesized to permit these animals to process varied foods. The foregut and STNS of Pugettia producta are similar to those of other decapods, but its diet is more uniform, consisting primarily of kelp. We investigated the distribution of highly conserved neuromodulators in the stomatogastric ganglion (STG) and neuroendocrine organs of Pugettia, and documented their effects on its pyloric rhythm. Using immunohistochemistry, we found that the distributions of Cancer borealis tachykinin-related peptide I (CabTRP I), crustacean cardioactive peptide (CCAP), proctolin, red pigment concentrating hormone (RPCH) and tyrosine hydroxylase (dopamine) were similar to those of other decapods. For all peptides except proctolin, the isoforms responsible for the immunoreactivity were confirmed by mass spectrometry to be the authentic peptides. Only two modulators had physiological effects on the pyloric circuit similar to those seen in other species. In non-rhythmic preparations, proctolin and the muscarinic acetylcholine agonist oxotremorine consistently initiated a full pyloric rhythm. Dopamine usually activated a pyloric rhythm, but this pattern was highly variable. In only about 25% of preparations, RPCH activated a pyloric rhythm similar to that seen in other species. CCAP and CabTRP I had no effect on the pyloric rhythm. Thus, whereas Pugettia possesses all the neuromodulators investigated, its pyloric rhythm, when compared with other decapods, appears less sensitive to many of them, perhaps because of its limited diet

    Stability and Hermitian-Einstein metrics for vector bundles on framed manifolds

    Full text link
    We adapt the notions of stability of holomorphic vector bundles in the sense of Mumford-Takemoto and Hermitian-Einstein metrics in holomorphic vector bundles for canonically polarized framed manifolds, i.e. compact complex manifolds X together with a smooth divisor D such that K_X \otimes [D] is ample. It turns out that the degree of a torsion-free coherent sheaf on X with respect to the polarization K_X \otimes [D] coincides with the degree with respect to the complete K\"ahler-Einstein metric g_{X \setminus D} on X \setminus D. For stable holomorphic vector bundles, we prove the existence of a Hermitian-Einstein metric with respect to g_{X \setminus D} and also the uniqueness in an adapted sense.Comment: 21 pages, International Journal of Mathematics (to appear

    Impact of layer defects in ferroelectric thin films

    Full text link
    Based on a modified Ising model in a transverse field we demonstrate that defect layers in ferroelectric thin films, such as layers with impurities, vacancies or dislocations, are able to induce a strong increase or decrease of the polarization depending on the variation of the exchange interaction within the defect layers. A Green's function technique enables us to calculate the polarization, the excitation energy and the critical temperature of the material with structural defects. Numerically we find the polarization as function of temperature, film thickness and the interaction strengths between the layers. The theoretical results are in reasonable accordance to experimental datas of different ferroelectric thin films.Comment: 17 pages, 8 figure

    SIFamide peptides modulate cardiac activity differently in two species of Cancer crab

    Get PDF
    The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif –SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10−9 to 10−8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion

    Effect of humidity on nitric acid uptake to mineral dust aerosol particles

    No full text
    International audienceThis study presents the first laboratory observation of HNO3 uptake by airborne mineral dust particles. The model aerosols were generated by dry dispersion of Arizona Test Dust (ATD), SiO2, and by nebulizing a saturated solution of calcium carbonate. The uptake of 13N-labeled gaseous nitric acid was observed in a flow reactor on the 0.2?2 s reaction time scale at room temperature and atmospheric pressure. The amount of nitric acid appearing in the aerosol phase at the end of the flow tube was found to be a linear function of the aerosol surface area. SiO2 particles did not show any significant uptake, while the CaCO3 aerosol was found to be more reactive than ATD. Due to the smaller uncertainty associated with the reactive surface area in the case of suspended particles as compared to bulk powder samples, we believe that we provide an improved estimate of the rate of uptake of HNO3 to mineral dust. The fact that the rate of uptake was smaller at a concentration of 1012 than at 1011 was indicative of a complex uptake mechanism. The uptake coefficient averaged over the first 2 s of reaction time at a concentration of 1012 molecules cm-3 was found to increase with increasing relative humidity, from 0.022±0.007 at 12% RH to 0.113±0.017 at 73% RH , which was attributed to an increasing degree of solvation of the more basic minerals. The extended processing of the dust by higher concentrations of HNO3 at 85% RH led to a water soluble coating on the particles and enhanced their hygroscopicity

    Identification, physiological actions, and distribution of TPSGFLGMRamide: A novel tachykinin-related peptide from the midgut and stomatogastric nervous system of Cancer crabs

    Get PDF
    In most invertebrates, multiple species-specific isoforms of tachykinin-related peptide (TRP) are common. In contrast, only a single conserved TRP isoform, APSGFLGMRamide, has been documented in decapod crustaceans, leading to the hypothesis that it is the sole TRP present in this arthropod order. Previous studies of crustacean TRPs have focused on neuronal tissue, but the recent demonstration of TRPs in midgut epithelial cells in Cancer species led us to question whether other TRPs are present in the gut, as is the case in insects. Using direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation, we found that at least one additional TRP is present in Cancer irroratus, Cancer borealis, Cancer magister, and Cancer productus. The novel TRP isoform, TPSGFLGMRamide, was present not only in the midgut, but also in the stomatogastric nervous system (STNS). In addition, we identified an unprocessed TRP precursor APSGFLGMRG, which was detected in midgut tissues only. TRP immunohistochemistry, in combination with preadsorption studies, suggests that APSGFLGMRamide and TPSGFLGMRamide are co-localized in the stomatogastric ganglion (STG), which is contained within the STNS. Exogenous application of TPSGFLGMRamide to the STG elicited a pyloric motor pattern that was identical to that elicited by APSGFLGMRamide, whereas APSGFLGMRG did not alter the pyloric motor pattern. © 2007 The Authors

    Identification, physiological actions, and distribution of TPSGFLGMRamide: A novel tachykinin-related peptide from the midgut and stomatogastric nervous system of Cancer crabs

    Get PDF
    In most invertebrates, multiple species-specific isoforms of tachykinin-related peptide (TRP) are common. In contrast, only a single conserved TRP isoform, APSGFLGMRamide, has been documented in decapod crustaceans, leading to the hypothesis that it is the sole TRP present in this arthropod order. Previous studies of crustacean TRPs have focused on neuronal tissue, but the recent demonstration of TRPs in midgut epithelial cells in Cancer species led us to question whether other TRPs are present in the gut, as is the case in insects. Using direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation, we found that at least one additional TRP is present in Cancer irroratus, Cancer borealis, Cancer magister, and Cancer productus. The novel TRP isoform, TPSGFLGMRamide, was present not only in the midgut, but also in the stomatogastric nervous system (STNS). In addition, we identified an unprocessed TRP precursor APSGFLGMRG, which was detected in midgut tissues only. TRP immunohistochemistry, in combination with preadsorption studies, suggests that APSGFLGMRamide and TPSGFLGMRamide are co-localized in the stomatogastric ganglion (STG), which is contained within the STNS. Exogenous application of TPSGFLGMRamide to the STG elicited a pyloric motor pattern that was identical to that elicited by APSGFLGMRamide, whereas APSGFLGMRG did not alter the pyloric motor pattern. © 2007 The Authors

    Mass spectrometric identification of pEGFYSQRYamide: A crustacean peptide hormone possessing a vertebrate neuropeptide Y (NPY)-like carboxy-terminus

    Get PDF
    In invertebrates, peptides possessing the carboxy (C)-terminal motif -RXRFamide have been proposed as the homologs of vertebrate neuropeptide Y (NPY). Using matrix assisted laser desorption/ionization mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation and chemical and enzymatic reactions, we have identified the peptide pEGFYSQRYamide from the neuroendocrine pericardial organ (PO) of the crab Pugettia producta. This peptide is likely the same as that previously reported, but misidentified, as PAFYSQRYamide in several earlier reports (e.g. [Li, L., Kelley, W.P., Billimoria, C.P., Christie, A.E., Pulver, S.R., Sweedler, J.V., Marder, E. 2003. Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J. Neurochem. 87, 642-656; Fu, Q., Kutz, K.K., Schmidt, J.J., Hsu, Y.W., Messinger, D.I., Cain, S.D., de la Iglesia, H.O., Christie, A.E., Li, L. 2005. Hormone complement of the Cancer productus sinus gland and pericardial organ: an anatomical and mass spectrometric investigation. J. Comp. Neurol. 493, 607-626.]). The -QRYamide motif contained in pEGFYSQRYamide is identical to that present in many vertebrate members of the NPY superfamily. Mass spectrometric analysis conducted on the POs of several other decapods showed that pEGFYSQRYamide is present in three other brachyurans (Cancer borealis, Cancer irroratus and Cancer productus) as well as in one species from another decapod infraorder (Lithodes maja, an anomuran). Thus, our findings show that at least some invertebrates possess NPY-like peptides in addition to those exhibiting an -RXRFamide C-terminus, and raise the question as to whether the invertebrate -QRYamides are functionally and/or evolutionarily related to the NPY superfamily. © 2007 Elsevier Inc. All rights reserved

    Molecular and mass spectral identification of the broadly conserved decapod crustacean neuropeptide pQIRYHQCYFNPISCF: The first PISCF-allatostatin (Manduca sexta- or C-type allatostatin) from a non-insect

    Get PDF
    The PISCF-allatostatins (Manduca sexta- or C-type allatostatins) are a family of pentadecapeptides characterized by a pyroglutamine blocked N-terminus, an unamidated-PISCF C-terminus, and a disulfide bridge between two internal Cys residues. Several isoforms of PISCF-AST are known, all from holometabolous insects. Using a combination of transcriptomics and mass spectrometry, we have identified the first PISCF-type peptides from a non-insect species. In silico analysis of crustacean ESTs identified several Litopenaeus vannamei (infraorder Penaeidea) transcripts encoding putative PISCF-AST precursors. Translation of these ESTs, with subsequent prediction of their putative post-translational processing, revealed the existence of as many as three PISCF-type peptides, including pQIRYHQCYFNPISCF (disulfide bridging between Cys7 and Cys14). Although none of the predicted isoforms was detected by mass spectrometry in L. vannamei, MALDI-FTMS mass profiling identified an m/z signal corresponding to pQIRYHQCYFNPISCF (disulfide bridge present) in neural tissue from 28 other decapods, which included members of six infraorders (Stenopodidea, Astacidea, Thalassinidea, Achelata, Anomura and Brachyura). Further characterization of the peptide using SORI-CID and chemical derivatization/enzymatic digestion supported the theorized structure. In both the crab Cancer borealis and the lobster Homarus americanus, MALDI-based tissue surveys suggest that pQIRYHQCYFNPISCF is broadly distributed in the nervous system; it was also detected in the posterior midgut caecum. Collectively, our data show that members of the PISCF-AST family are not restricted to the holometabolous insects, but instead may be broadly conserved within the Pancrustacea. Moreover, our data suggest that one highly conserved PISCF-type peptide, pQIRYHQCYFN-PISCF, is present in decapod crustaceans, functioning as a brain-gut paracrine/hormone. © 2009 Elsevier Inc. All rights reserved
    • …
    corecore