11,365 research outputs found

    Time-varying neutrino mass from a supercooled phase transition: current cosmological constraints and impact on the Ωm\Omega_m-σ8\sigma_8 plane

    Get PDF
    In this paper we investigate a time-varying neutrino mass model, motivated by the mild tension between cosmic microwave background (CMB) measurements of the matter fluctuations and those obtained from low-redshift data. We modify the minimal case of the model proposed by Dvali and Funcke (2016) that predicts late neutrino mass generation in a post-recombination cosmic phase transition, by assuming that neutrino asymmetries allow for the presence of relic neutrinos in the late-time Universe. We show that, if the transition is supercooled, current cosmological data (including CMB temperature, polarization and lensing, baryon acoustic oscillations, and Type Ia supernovae) prefer the scale factor asa_s of the phase transition to be very large, peaking at as∼1a_s\sim 1, and therefore supporting a cosmological scenario in which neutrinos are almost massless until very recent times. We find that in this scenario the cosmological bound on the total sum of the neutrino masses today is significantly weakened compared to the standard case of constant-mass neutrinos, with ∑mν<4.8\sum m_\nu<4.8~eV at 95\% confidence, and in agreement with the model predictions. The main reason for this weaker bound is a large correlation arising between the dark energy and neutrino components in the presence of false vacuum energy that converts into the non-zero neutrino masses after the transition. This result provides new targets for the coming KATRIN and PTOLEMY experiments. We also show that the time-varying neutrino mass model considered here does not provide a clear explanation to the existing cosmological Ωm\Omega_m-σ8\sigma_8 discrepancies.Comment: 13 pages, 13 figures, matches updated version accepted by Physical Review

    Non-Gaussianity from Axion Monodromy Inflation

    Get PDF
    We study the primordial non-Gaussinity predicted from simple models of inflation with a linear potential and superimposed oscillations. This generic form of the potential is predicted by the axion monodromy inflation model, that has recently been proposed as a possible realization of chaotic inflation in string theory, where the monodromy from wrapped branes extends the range of the closed string axions to beyond the Planck scale. The superimposed oscillations in the potential can lead to new signatures in the CMB spectrum and bispectrum. In particular the bispectrum will have a new distinct shape. We calculate the power spectrum and bispectrum of curvature perturbations in the model, as well as make analytic estimates in various limiting cases. From the numerical analysis we find that for a wide range of allowed parameters the model produces a feature in the bispectrum with fnl ~ 50 or larger while the power spectrum is almost featureless. This model is therefore an example of a string-inspired inflationary model which is testable mainly through its non-Gaussian features. Finally we provide a simple analytic fitting formula for the bispectrum which is accurate to approximately 5% in all cases, and easily implementable in codes designed to provide non-Gaussian templates for CMB analyses.Comment: 14 pages, 4 figures, added references, and a new figure with the general shap

    Observing trans-Planckian ripples in the primordial power spectrum with future large scale structure probes

    Full text link
    We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter epsilon (> 0.001), a positive detection of trans-Planckian ripples can be made even if the amplitude is as low as 10^-4. Data from the Large Synoptic Survey Telescope (LSST) and the proposed future 21 cm survey with the Fast Fourier Transform Telescope (FFTT) will be particularly useful in this regard. If the scale of inflation is close to its present upper bound, a scale of new physics as high as 0.2 M_Planck could lead to observable signatures.Comment: 20 pages, 3 figures, uses iopart.cls; v2: 21 pages, added references, to appear in JCA

    Simplified Distributed Programming with Micro Objects

    Full text link
    Developing large-scale distributed applications can be a daunting task. object-based environments have attempted to alleviate problems by providing distributed objects that look like local objects. We advocate that this approach has actually only made matters worse, as the developer needs to be aware of many intricate internal details in order to adequately handle partial failures. The result is an increase of application complexity. We present an alternative in which distribution transparency is lessened in favor of clearer semantics. In particular, we argue that a developer should always be offered the unambiguous semantics of local objects, and that distribution comes from copying those objects to where they are needed. We claim that it is often sufficient to provide only small, immutable objects, along with facilities to group objects into clusters.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Investigation of flow and thermal behaviour in a pipe submerged in a hot fluid

    Get PDF
    Convection heat transfer through a pipe immersed in a stagnant fluid is used in various applications such as water heaters, chemical and food industry, etc. In this study, the effect of mixed convection on the flow and thermal structure of a fluid immersed inside a hotter, stagnant fluid was experimentally investigated. Temperature and velocity fields were obtained for a Reynolds number range of 330-6670, and a Grashof number range of 14000-95000 (0.6 \u3c Gr/Re2 \u3c 0.0003). It was found that the buoyancy-induced wall-normal velocity component altered the streamwise velocity structure and the temperature profiles. The mean streamwise velocity profile was skewed towards the bottom of the pipe for initially laminar flow only. A vertical temperature gradient was also observed in the internal fluid under these conditions, where the hotter fluid resided in the top region of the pipe. The Nusselt number was found to moderately follow the predictive Gnielinski correlation, with an additional dependence on the bottom wall temperature. This showed that an increase in the Grashof number tended to dampen the turbulent convective heat transfer. The influence of natural convection on the mean and turbulent velocity profiles was found to be almost negligible in the high Reynolds number range

    Dark energy and dark matter from cosmological observations

    Full text link
    The present status of our knowledge about the dark matter and dark energy is reviewed. Bounds on the content of cold and hot dark matter from cosmological observations are discussed in some detail. I also review current bounds on the physical properties of dark energy, mainly its equation of state and effective speed of sound.Comment: 12 pages, 4 figures, to appear in Lepton-Photon 2005 proceedings, added figure and typos correcte

    New cosmological mass limit on thermal relic axions

    Get PDF
    Observations of the cosmological large-scale structure provide well-established neutrino mass limits. We extend this argument to thermal relic axions. We calculate the axion thermal freeze-out temperature and thus their cosmological abundance on the basis of their interaction with pions. For hadronic axions we find a new mass limit ma<1.05m_a<1.05 eV (95% CL), corresponding to a limit on the axion decay constant of fa>5.7×106f_a>5.7\times 10^6 GeV. For other models this constraint is significantly weakened only if the axion-pion coupling is strongly suppressed. For comparison we note that the same approach leads to ∑mν<0.65\sum m_\nu<0.65 eV (95% CL) for neutrinos.Comment: (17 pages, 12 eps figures

    The labor market regimes of Denmark and Norway – one Nordic model?

    Get PDF
    The literature on the Danish and Norwegian labor market systems emphasizes the commonalities of the two systems. We challenge this perception by investigating how employers in multinational companies in Denmark and Norway communicate with employees on staffing changes. We argue that the development of ‘flexicurity’ in Denmark grants Danish employers considerably greater latitude in engaging in staffing changes than its Nordic counterpart, Norway. Institutional theory leads us to suppose that large firms located in the Danish setting will be less likely to engage in employer–employee communication on staffing plans than their Norwegian counterparts. In addition, we argue that in the Danish context indigenous firms will have a better insight into the normative and cognitive aspects to flexicurity than foreign-owned firms, meaning that they are more likely to engage in institutional entrepreneurialism than their foreign owned counterparts. We supplement institutional theory with an actor perspective in order to take into account the role of labor unions. Our analysis is based on a survey of 203 firms in Norway and Denmark which are either indigenous multinational companies or the subsidiaries of foreign multinational companies. The differences we observe cause us to conclude that the notion of a common Nordic model is problematic

    CPT - Contraption for Probing in Tills?

    Get PDF
    • …
    corecore