124 research outputs found

    Development of Accident Reduction Factors

    Get PDF
    The objective of this project is to develop accident reduction factors associated with various types of highway safety improvements. These factors will be used in the cost-optimization procedure to rank safety improvements. The basis of the accident reduction factors developed in this study is a survey of states and a review of literature. The recommended reduction factors are presented in a table which lists the percent reduction in all accidents or specific types of accidents for given types of improvements

    Towards Understanding the Roaming Mechanism in H + MgH → Mg + HH Reaction

    Get PDF
    The roaming mechanism in the reaction H + MgH →Mg + HH is investigated by classical and quantum dynamics employing an accurate ab initio three-dimensional ground electronic state potential energy surface. The reaction dynamics are explored by running trajectories initialized on a four-dimensional dividing surface anchored on three-dimensional normally hyperbolic invariant manifold associated with a family of unstable orbiting periodic orbits in the entrance channel of the reaction (H + MgH). By locating periodic orbits localized in the HMgH well or involving H orbiting around the MgH diatom, and following their continuation with the total energy, regions in phase space where reactive or nonreactive trajectories may be trapped are found. In this way roaming reaction pathways are deduced in phase space. Patterns similar to periodic orbits projected into configuration space are found for the quantum bound and resonance eigenstates. Roaming is attributed to the capture of the trajectories in the neighborhood of certain periodic orbits. The complex forming trajectories in the HMgH well can either return to the radical channel or “roam” to the MgHH minimum from where the molecule may react

    Two prospective, multicenter studies for the identification of biomarker signatures for early detection of pulmonary hypertension (PH): the CIPHER and CIPHER‐MRI studies

    Get PDF
    A blood test identifying patients at increased risk of pulmonary hypertension (PH) could streamline the investigative pathway. The prospective, multicenter CIPHER study aimed to develop a microRNA-based signature for detecting PH in breathless patients and enrolled adults with a high suspicion of PH who had undergone right heart catheterization (RHC). The CIPHER-MRI study was added to assess the performance of this CIPHER signature in a population with low probability of having PH who underwent cardiac magnetic resonance imaging (cMRI) instead of RHC. The microRNA signature was developed using a penalized linear regression (LASSO) model. Data were modeled both with and without N-terminal pro-brain natriuretic peptide (NT-proBNP). Signature performance was assessed against predefined thresholds (lower 98.7% CI bound of ≥0.73 for sensitivity and ≥0.53 for specificity, based on a meta-analysis of echocardiographic data), using RHC as the true diagnosis. Overall, 926 CIPHER participants were screened and 888 were included in the analysis. Of 688 RHC-confirmed PH cases, approximately 40% were already receiving PH treatment. Fifty microRNA (from 311 investigated) were algorithmically selected to be included in the signature. Sensitivity [97.5% CI] of the signature was 0.85 [0.80–0.89] for microRNA-alone and 0.90 [0.86–0.93] for microRNA+NT-proBNP, and the corresponding specificities were 0.33 [0.24–0.44] and 0.28 [0.20–0.39]. Of 80 CIPHER-MRI participants with evaluable data, 7 were considered PH-positive by cMRI whereas 52 were considered PH-positive by the microRNA signature. Due to low specificity, the CIPHER miRNA-based signature for PH (either with or without NT-proBNP in model) did not meet the prespecified diagnostic threshold for the primary analysis
    corecore