7,124 research outputs found

    Prediction of hydrodynamics and chemistry of confined turbulent methane-air flames with attention to formation of oxides of nitrogen

    Get PDF
    A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a tubular combustor is presented. A numerical procedure for the solution of the governing differential equations is described, and models for chemical equilibrium and chemical kinetics calculations are presented. The chemical equilibrium model is used to characterize the hydrocarbon reactions. The chemical kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor consists of a cylindrical duct of varying cross sections with concentric streams of gaseous fuel and air entering the duct at one end. Four sample cases with specified inlet and boundary conditions are considered, and the results are discusse

    Effect of gravity on methane-air combustion

    Get PDF
    Analytical and numerical techniques dealing with the theoretical description of the influence of zero and reduced gravitational acceleration on diffusion flames, with a view to improving understanding of fires in space vehicles, were developed in support of experimental work performed in this area. This was done in order to confirm qualitative understanding of the process, to determine the quantitative accuracy of numerical predictions, and to establish a mathematical model of the process for subsequent use as a predictive and exploratory tool. The following results were accomplished: (1) derivation of differential equations and boundary conditions describing the system, (2) details of the computations, using a FORTRAN computer program, for calculating the flow and heat and mass transfer in two dimensions (both steady and unsteady). It was shown that the experimental behavior can be reproduced with fair accuracy, provided that the time step is sufficiently short

    Resolution limits of quantum ghost imaging

    Get PDF
    Quantum ghost imaging uses photon pairs produced from parametric downconversion to enable an alternative method of image acquisition. Information from either one of the photons does not yield an image, but an image can be obtained by harnessing the correlations between them. Here we present an examination of the resolution limits of such ghost imaging systems. In both conventional imaging and quantum ghost imaging the resolution of the image is limited by the point-spread function of the optics associated with the spatially resolving detector. However, whereas in conventional imaging systems the resolution is limited only by this point spread function, in ghost imaging we show that the resolution can be further degraded by reducing the strength of the spatial correlations inherent in the downconversion process

    The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    Experimental limits of ghost diffraction: Popper’s thought experiment

    Get PDF
    Quantum ghost diffraction harnesses quantum correlations to record diffraction or interference features using photons that have never interacted with the diffractive element. By designing an optical system in which the diffraction pattern can be produced by double slits of variable width either through a conventional diffraction scheme or a ghost diffraction scheme, we can explore the transition between the case where ghost diffraction behaves as conventional diffraction and the case where it does not. For conventional diffraction the angular extent increases as the scale of the diffracting object is reduced. By contrast, we show that no matter how small the scale of the diffracting object, the angular extent of the ghost diffraction is limited (by the transverse extent of the spatial correlations between beams). Our study is an experimental realisation of Popper’s thought experiment on the validity of the Copenhagen interpretation of quantum mechanics. We discuss the implication of our results in this context and explain that it is compatible with, but not proof of, the Copenhagen interpretation

    Teaching Sustainability: Recommendations for Best Pedagogical Practices

    Get PDF
    Although sustainability has become a key focus in higher education, developing a better understanding of how sustainability competencies can be cultivated in college and university courses and programs is still needed. This article argues that learners who are to become capable of affecting holistic sustainable change, transforming values and culture, healing the earth and human communities, and designing creative solutions, must have the opportunity to engage in learning processes that reflect these learning outcomes. We outline key elements of sustainability pedagogy and suggest best pedagogical practices for designing engaging and holistic sustainability learning, and highlight these practices through a sustainability course offered at our institution

    Optically transparent piezoelectric transducer for ultrasonic particle manipulation

    Get PDF
    We report an optically transparent ultrasonic device, consisting of indium-tin-oxide-coated lithium niobate (LNO), for use in particle manipulation. This device shows good transparency in the visible and near-infrared wavelengths and, acoustically, compares favorably with conventional prototype devices with silver electrodes

    High Spatial Resolution Thermal-Infrared Spectroscopy with ALES: Resolved Spectra of the Benchmark Brown Dwarf Binary HD 130948BC

    Full text link
    We present 2.9-4.1 micron integral field spectroscopy of the L4+L4 brown dwarf binary HD 130948BC, obtained with the Arizona Lenslets for Exoplanet Spectroscopy (ALES) mode of the Large Binocular Telescope Interferometer (LBTI). The HD 130948 system is a hierarchical triple system, in which the G2V primary is joined by two co-orbiting brown dwarfs. By combining the age of the system with the dynamical masses and luminosities of the substellar companions, we can test evolutionary models of cool brown dwarfs and extra-solar giant planets. Previous near-infrared studies suggest a disagreement between HD 130948BC luminosities and those derived from evolutionary models. We obtained spatially-resolved, low-resolution (R~20) L-band spectra of HD 130948B and C to extend the wavelength coverage into the thermal infrared. Jointly using JHK photometry and ALES L-band spectra for HD 130948BC, we derive atmospheric parameters that are consistent with parameters derived from evolutionary models. We leverage the consistency of these atmospheric quantities to favor a younger age (0.50 \pm 0.07 Gyr) of the system compared to the older age (0.79 \pm 0.22 Gyr) determined with gyrochronology in order to address the luminosity discrepancy.Comment: 17 pages, 9 figures, Accepted to Ap

    Forests and Carbon: A Synthesis of Science, Management, and Policy for Carbon Sequestration in Forests

    Get PDF
    The goal of this volume is to provide guidance for land managers and policymakers seeking to understand the complex science and policy of forest carbon as it relates to tangible problems of forest management and the more abstract problems of addressing drivers of deforestation and negotiating policy frameworks for reducing CO2 emissions from forests. It is the culmination of three graduate seminars at the Yale School of Forestry & Environmental Studies focused on carbon sequestration in forest ecosystems and their role in addressing climate change
    • …
    corecore