544 research outputs found
Recommended from our members
Radiative impact of mixing state of black carbon aerosol in Asian outflow
The radiative impact of the mixing state of black carbon (BC) aerosol is investigated in Asian outflow. The mixing state and size distribution of BC aerosol were measured with a ground-based single-particle soot photometer at a remote island (Fukue) in Japan in spring 2007. The mass concentration of BC in Asian continental air masses reached 0.5 μg m-3, with a mass median diameter of 200-220 nm. The median value of the shell/core diameter ratio increased to ∼1.6 in Asian continental and maritime air masses with a core diameter of 200 mn, while in free tropospheric and Japanese air masses it was 1.3-1.4. On the basis of theoretical calculations using the size distribution and mixing state of BC aerosol, scattering and absorption properties of PM1 aerosols were calculated under both dry and ambient conditions, considering the hygroscopic growth of aerosols. It was estimated that internal mixing enhanced the BC absorption by a factor of 1.5-1.6 compared to external mixing. The calculated absorption coefficient was 2-3 times higher in Asian continental air masses than in clean air. Coatings reduced the single-scattering albedo (SSA) of PM1 aerosol by 0.01 -0.02, which indicates the importance of the mixing state of BC aerosol in evaluating its radiative influence. The SSA was sensitive to changes in air mass type, with a value of ∼0.98 in Asian continental air masses and ∼0.95 in Japanese and free tropospheric air masses under ambient conditions. Copyright 2008 by the American Geophysical Union
Benchmark between antenna code TOPICA, RAPLICASOL and Petra-M for the ICRH ITER antenna
ITER will be equipped with three plasma heating systems: neutral beam (NB), electron cyclotron (EC), and ion cy-clotron resonance heating (ICRH). The latter consists of two identical ICRH antennas to deliver 20 MW to the plasma (baseline, upgradable to 40 MW). ICRH will play a crucial role in the ignition and sustainment of burning plasmas in ITER. A high fidelity and robust modeling effort to understand the interaction of the IC waves with the scrape-off-layer (SOL) plasma is a very important aspect. Among the main important research topics, we have the assessment of the antenna loading for different plasma scenarios, the role of the lower hybrid resonance in front of the antenna and how to include it in our models, and the RF sheath boundary conditions to evaluate the antenna impurity generation. In this work, we tackle the first of these by reporting on ICRF simulations employing the Petra-M code, which is an electromagnetic simulation tool for modeling RF wave propagation based on MFEM [http://mfem.org] for the ITER ICRH antenna. Moreover, a benchmark between the well tested antenna codes TOPICA, RAPLI-CASOL, which is based on COMSOL [www.comsol.com], and the Petra-M code is also presented. S- and Z-matrices and wave electric field are compared showing an excellent agreement among these codes
Recommended from our members
Chemical characterization of water-soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006
Online measurements of water-soluble organic carbon (WSOC) aerosols were made using a particle-into-liquid sampler (PILS) combined with a total organic carbon (TOC) analyzer at a rural site in the Pearl River Delta region, China, in July 2006. A macroporous nonionic (DAX-8) resin was used to quantify hydrophilic and hydrophobic WSOC, which are defined as the fractions of WSOC that penetrated through and retained on the DAX-8 column, respectively. Laboratory calibrations showed that hydrophilic WSOC (WSOCHPI) included low-molecular aliphatic dicarboxylic acids and carbonyls, saccharides, and amines, while hydrophobic WSOC (WSOCHPO) included longer-chain aliphatic dicarboxylic acids and carbonyls, aromatic acids, phenols, organic nitrates, cyclic acids, and fulvic acids. On average, total WSOC (TWSOC) accounted for 60% of OC, and WSOCHPO accounted for 60% of TWSOC. Both WSOC HIP and WSOCHPO increased with photochemical aging determined from the NOx/NOy ratio. In particular, the average WSOCHPO mass was found to increase by a factor of five within a timescale of ∼10 hours, which was substantially larger than that of WSOCHPI (by a factor of 2-3). The total increase in OC mass with photochemical aging was associated with the large increase in WSOCHPO mass. These results, combined with the laboratory calibrations, suggest that significant amounts of hydrophobic organic compounds (likely containing large carbon numbers) were produced by photochemical processing. By contrast, water-insoluble OC (WIOC) mass did not exhibit significant changes with photochemical aging, suggesting that chemical transformation of WIOC to WSOC was not a dominant process for the production of WSOC during the study period. Copyright 2009 by the American Geophysical Union
Ion acceleration during internal magnetic reconnection events in TST-2
Characteristics of ion acceleration in the internal magnetic reconnection
events (IRE) have been studied by means of a neutral particle energy analyzer
(NPA) in Tokyo Spherical Tokamak (TST-2). The major and minor radii are 0.38 m
and 0.25m, respectively. The magnetic field strength is 0.3T and the maximum
plasma current is up to 140 kA. The electron and ion temperatures are 0.4-0.5
keV and 0.1 keV, respectively and the electron density is ~1x1019 m-3. The NPA
can be scanned toroidally from q = 74° (cw) to q = 114° (ccw), where q
= 90° corresponds to the perpendicular sightline. The direction of the
plasma current is cw. The NPA signals are digitized at every 50 ms. The NPA is
calibrated in the energy range of 0.1 keV < E < 8.4 keV. When the IRE occurs,
it is observed that the plasma current increases by ~ 20% and the loop voltage
drops from 0.6 V to-5 V for ~ 0.1 ms. The enhanced charge exchange flux is
observed by more than one order of magnitude at ~ 1 keV for this reconnection
phase. The ion temperature increases by 80 eV at IREs. The angle q dependence
of increment of Ti shows that DTi (q = 74°) is higher than that for q =
114°. This observation suggests that an ion is accelerated initially in the
direction of magnetic field lines. The time evolution of the ion distribution
function is simulated with a Fokker-Planck code taking into account the
electric field effects.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Recommended from our members
Real-time capable modeling of ICRF heating on NSTX and WEST via machine learning approaches
A real-time capable core Ion Cyclotron Range of Frequencies (ICRF) heating model on NSTX and WEST is developed. The model is based on two nonlinear regression algorithms, the random forest ensemble of decision trees and the multilayer perceptron neural network. The algorithms are trained on TORIC ICRF spectrum solver simulations of the expected flat-top operation scenarios in NSTX and WEST assuming Maxwellian plasmas. The surrogate models are shown to successfully capture the multi-species core ICRF power absorption predicted by the original model for the high harmonic fast wave and the ion cyclotron minority heating schemes while reducing the computational time by six orders of magnitude. Although these models can be expanded, the achieved regression scoring, computational efficiency and increased model robustness suggest these strategies can be implemented into integrated modeling frameworks for real-time control applications
Stationary density profiles in the Alcator C-mod tokamak
In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Discharges that transition from L-mode to I-mode are seen to maintain a self-similar stationary density profile as measured by Thomson scattering. For discharges with negative magnetic shear, an observed rise of the safety factor in the vicinity of the magnetic axis appears to be accompanied by a decrease of electron density, qualitatively consistent with the theoretical expectations. © 2012 American Institute of Physics.United States. Department of Energy. Office of Fusion Energy Science
- …