108 research outputs found

    Developmental social case work : a process model

    Get PDF
    Abstract: Social development has been adopted as South Africa’s social welfare approach and is increasingly being adopted in Africa and other parts of the developing world. The translation of developmental social welfare to social work has, however, been difficult for many social workers. A particularly challenging aspect of this translation concerns the practice of social case work within a social development approach, a topic that has received virtually no attention in the social development literature. This paper constructs a process model for a form of social case work that is informed by social development principles and priorities

    Evolutionary Consequences of Altered Atmospheric Oxygen in Drosophila melanogaster

    Get PDF
    Twelve replicate populations of Drosophila melanogaster, all derived from a common ancestor, were independently evolved for 34+ generations in one of three treatment environments of varying PO2: hypoxia (5.0–10.1 kPa), normoxia (21.3 kPa), and hyperoxia (40.5 kPa). Several traits related to whole animal performance and metabolism were assayed at various stages via “common garden” and reciprocal transplant assays to directly compare evolved and acclimatory differences among treatments. Results clearly demonstrate the evolution of a greater tolerance to acute hypoxia in the hypoxia-evolved populations, consistent with adaptation to this environment. Greater hypoxia tolerance was associated with an increase in citrate synthase activity in fly homogenate when compared to normoxic (control) populations, suggesting an increase in mitochondrial volume density in these populations. In contrast, no direct evidence of increased performance of the hyperoxia-evolved populations was detected, although a significant decrease in the tolerance of these populations to acute hypoxia suggests a cost to adaptation to hyperoxia. Hyperoxia-evolved populations had lower productivity overall (i.e., across treatment environments) and there was no evidence that hypoxia or hyperoxia-evolved populations had greatest productivity or longevity in their respective treatment environments, suggesting that these assays failed to capture the components of fitness relevant to adaptation

    Time domains of the hypoxic ventilatory response in ectothermic vertebrates

    Get PDF
    Over a decade has passed since Powell et al. (Respir Physiol 112:123–134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123–134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O2 supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more ‘holistic’ fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind

    Design, Analysis, and Implementation of DVSR: A Fair, High Performance Protocol for Packet Rings

    No full text
    The Resilient Packet Ring (RPR) IEEE 802.17 standard is a new technology for high-speed backbone metropolitan area networks. A key performance objective of RPR is to simultaneously achieve high utilization, spatial reuse, and fairness, an objective not achieved by current technologies such as SONET and Gigabit Ethernet nor by legacy ring technologies such as FDDI. The core technical challenge for RPR is the design of a bandwidth allocation algorithm that dynamically achieves these three properties. The difficulty is in the distributed nature of the problem, that upstream ring nodes must inject traffic at a rate according to congestion and fairness criteria downstream. Unfortunately, we show that under unbalanced and constant-rate traffic inputs, the RPR fairness algorithm suffers from severe and permanent oscillations spanning nearly the entire range of the link capacity. Such oscillations hinder spatial reuse, decrease throughput, and increase delay jitter. In this paper, we introduce a new dynamic bandwidth allocation algorithm called Distributed Virtualtime Scheduling in Rings (DVSR). The key idea is for nodes to compute a simple lower bound of temporally and spatially aggregated virtual time using per-ingress counters of packet (byte) arrivals. We show that with this information propagated along the ring, each node can remotely approximate the ideal fair rate for its own traffic at each downstream link. Hence, DVSR flows rapidly converge to their ring-wide fair rates while maximizing spatial reuse. To evaluate DVSR, we develop an idealized fairness reference model and bound the deviation in service between DVSR and the reference model, thereby bounding the unfairness. With simulations, we find that compared to current techniques, DVSR's convergence times are an orde..

    Design, Analysis, and Implementation of DVSR: A Fair High-Performance Protocol for Packet Rings

    No full text

    Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis

    Get PDF
    Background: Rescuing amphibian diversity is an achievable conservation challenge. Disease mitigation is one essential component of population management. Here we assess existing disease mitigation strategies, some in early experimental stages, which focus on the globally emerging chytrid fungus Batrachochytrium dendrobatidis. We discuss the precedent for each strategy in systems ranging from agriculture to human medicine, and the outlook for each strategy in terms of research needs and long-term potential. Results: We find that the effects of exposure to Batrachochytrium dendrobatidis occur on a spectrum from transient commensal to lethal pathogen. Management priorities are divided between (1) halting pathogen spread and developing survival assurance colonies, and (2) prophylactic or remedial disease treatment. Epidemiological models of chytridiomycosis suggest that mitigation strategies can control disease without eliminating the pathogen. Ecological ethics guide wildlife disease research, but several ethical questions remain for managing disease in the field. Conclusions: Because sustainable conservation of amphibians in nature is dependent on long-term population persistence and co-evolution with potentially lethal pathogens, we suggest that disease mitigation not focus exclusively on the elimination or containment of the pathogen, or on the captive breeding of amphibian hosts. Rather, successful disease mitigation must be context specific with epidemiologically informed strategies to manage already infected populations by decreasing pathogenicity and host susceptibility. We propose population level treatments based on three steps: first, identify mechanisms of disease suppression; second, parameterize epizootiological models of disease and population dynamics for testing under semi-natural conditions; and third, begin a process of adaptive management in field trials with natural populations
    corecore