950 research outputs found

    Correlating atom probe tomography with x-ray and electron spectroscopies to understand microstructure-activity relationships in electrocatalysts

    Get PDF
    The search for a new energy paradigm with net-zero carbon emissions requires new technologies for energy generation and storage that are at the crossroad between engineering, chemistry, physics, surface and materials sciences. To keep pushing the inherent boundaries of device performance and lifetime, we need to step away from a cook-and-look approach and aim to establish the scientific ground to guide the design of new materials. This requires strong efforts in establishing bridges between microscopy and spectroscopy techniques, across multiple scales. Here, we discuss how the complementarities of X-ray- and electron-based spectroscopies and atom probe tomography can be exploited in the study of surfaces and sub-surfaces to understand structure-property relationships in electrocatalysts

    Full-genome sequence of the plant growth-promoting bacterium Pseudomonas protegens CHA0.

    Get PDF
    We report the complete genome sequence of the free-living bacterium Pseudomonas protegens (formerly Pseudomonas fluorescens) CHA0, a model organism used in plant-microbe interactions, biological control of phytopathogens, and bacterial genetics

    In-situ nitriding of Fe<sub>2</sub>VAl during laser surface remelting to manipulate microstructure and crystalline defects

    Get PDF
    Tailoring the physical properties of complex materials for targeted applications requires optimizing the microstructure and crystalline defects that influence electrical and thermal transport and mechanical properties. Laser surface remelting can be used to modify the subsurface microstructure of bulk materials and hence manipulate their properties locally. Here, we introduce an approach to perform remelting in a reactive nitrogen atmosphere to form nitrides and induce segregation of nitrogen to structural defects. These defects arise from the fast solidification of the full-Heusler Fe2VAl compound that is a promising thermoelectric material. Advanced scanning electron microscopy, including electron channeling contrast imaging and three-dimensional electron backscatter diffraction, is complemented by atom probe tomography to study the distribution of crystalline defects and their local chemical composition. We reveal a high density of dislocations, which are stable due to their character as geometrically necessary dislocations. At these dislocations and low-angle grain boundaries, we observe segregation of nitrogen and vanadium, which can be enhanced by repeated remelting in nitrogen atmosphere. We propose that this approach can be generalized to other additive manufacturing processes to promote local segregation and precipitation states, thereby manipulating physical properties

    Pseudomonas fluorescens CHA0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions

    Get PDF
    Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum. One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in separate halves of the root system to separate local and systemic effects. The short-term plant response to fungal infection was followed by using the short-lived isotopic tracer 11CO2 to track the delivery of recent photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection, whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct pathogen inhibition

    Elemental (im-)miscibility determines phase formation of multinary nanoparticles co-sputtered in ionic liquids

    Get PDF
    Non-equilibrium synthesis methods allow to alloy bulk-immiscible elements into multinary nanoparticles, which broadens the design space for new materials.Whereas sputtering onto solid substrates can combine immiscible elements into thin film solid solutions, this is not clear for sputtering of nanoparticles in ionicliquids. Thus, the suitability of sputtering in ionic liquids for producing nanoparticles of immiscible elements is investigated by co-sputtering the systems Au-Cu (miscible), Au-Ru and Cu-Ru (both immiscible), and Au-Cu-Ru on the surface of the ionic liquid 1-butyl-3-methylimidazolium bis-trifluoromethylsulfonyl)imide [Bmim][(Tf)2N]. The sputtered nanoparticles were analyzed to obtain (i) knowledge concerning the general formation process ofnanoparticles when sputtering onto ionic liquid surfaces and (ii) information, if alloy nanoparticles of immiscible elements can be synthesized as well as (iii)evidence if the Hume-Rothery rules for solid solubility are valid for sputtered nanoparticles. Accompanying atomistic simulations using density-functional theoryfor clusters of different size and ordering confirm that the miscibility of Au-Cu and the immiscibility of Au-Ru and Cu-Ru govern the thermodynamic stabilityof the nanoparticles. Based on the matching experimental and theoretical results for the NP/IL-systems concerning NP stability, a formation model of multinaryNPs in ILs was developed
    corecore