231 research outputs found
Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds.
Plastic debris is ingested by hundreds of species of organisms, from zooplankton to baleen whales, but how such a diversity of consumers can mistake plastic for their natural prey is largely unknown. The sensory mechanisms underlying plastic detection and consumption have rarely been examined within the context of sensory signals driving marine food web dynamics. We demonstrate experimentally that marine-seasoned microplastics produce a dimethyl sulfide (DMS) signature that is also a keystone odorant for natural trophic interactions. We further demonstrate a positive relationship between DMS responsiveness and plastic ingestion frequency using procellariiform seabirds as a model taxonomic group. Together, these results suggest that plastic debris emits the scent of a marine infochemical, creating an olfactory trap for susceptible marine wildlife
Presence and biodistribution of perfluorooctanoic acid (PFOA) in Paracentrotus lividus highlight its potential application for environmental biomonitoring
The first determination of presence and biodistribution of PFOA in ninety specimens of sea urchin Paracentrotus lividus from two differently contaminated sites along Palermo’s coastline (Sicily) is reported. Analyses were performed on the sea urchins’ coelomic fluids, coelomocytes, gonads or mixed organs, as well as on seawater and Posidonia oceanica leaves samples from the collection sites. PFOA concentration ranged between 1 and 13 ng/L in seawater and between 0 and 794 ng/g in P. oceanica. The analyses carried out on individuals of P. lividus from the least polluted site (A) showed PFOA median values equal to 0 in all the matrices (coelomic fluid, coelomocytes and gonads). Conversely, individuals collected from the most polluted site (B) showed median PFOA concentrations of 21 ng/g in coelomic fluid, 153 ng/g in coelomocytes, and 195 ng/g in gonads. Calculated bioconcentration factors of log10BCF > 3.7 confirmed the very bioaccumulative nature of PFOA. Significant correlations were found between the PFOA concentration of the coelomic fluid versus the total PFOA concentration of the entire sea urchin. PERMANOVA (p = 0.001) end Welch's t-test (p < 0.001) analyses showed a difference between specimens collected from the two sites highlighting the potential application of P. lividus as sentinel species for PFOA biomonitoring
Whale recovery and the emerging human-wildlife conflict over Antarctic krill
The Southern Ocean ecosystem has undergone extensive changes in the past two centuries driven by industrial sealing and whaling, climate change and
commercial fishing. However, following the end of commercial whaling, some populations of whales in this region are recovering. Baleen whales are reliant on Antarctic krill, which is also the largest Southern Ocean fishery. Since 1993, krill catch has increased fourfold, buoyed by nutritional supplement and aquaculture industries. In this Perspective, we approximate baleen whale consumption of Antarctic krill before and after whaling to examine if the ecosystem can support both humans and whales as krill predators. Our back-of-
the-envelope calculations suggest that current krill biomass cannot support both an expanding krill fishery and the recovery of whale populations to prewhaling
sizes, highlighting an emerging human-wildlife conflict. We then provide recommendations for enhancing sustainability in this region by reducing encounters with whales and bolstering the krill population
Is caretta caretta a carrier of antibiotic resistance in the mediterranean sea?
Sea turtles can be considered a sentinel species for monitoring the health of marine ecosystems, acting, at the same time, as a carrier of microorganisms. Indeed, sea turtles can acquire the microbiota from their reproductive sites and feeding, contributing to the diffusion of antibiotic-resistant strains to uncontaminated environments. This study aims to unveil the presence of antibiotic-resistant bacteria in (i) loggerhead sea turtles stranded along the coast of Sicily (Mediterranean Sea), (ii) unhatched and/or hatched eggs, (iii) sand from the turtles’ nest and (iv) seawater. Forty-four bacterial strains were isolated and identified by conventional biochemical tests and 16S rDNA sequencing. The Gram-negative Aeromonas and Vibrio species were mainly found in sea turtles and seawater samples, respectively. Conversely, the Gram-positive Bacillus, Streptococcus, and Staphylococcus strains were mostly isolated from eggs and sand. The antimicrobial resistance profile of the isolates revealed that these strains were resistant to cefazolin (95.5%), streptomycin (43.2%), colistin and amoxicillin/clavulanic acid (34.1%). Moreover, metagenome analysis unveiled the presence of both antibiotic and heavy metal resistance genes, as well as the mobile element class 1 integron at an alarming percentage rate. Our results suggest that Caretta caretta could be considered a carrier of antibiotic-resistant genes
Whale Baleen To Monitor Per- and Polyfluoroalkyl Substances (PFAS) in Marine Environments
Per- and polyfluoroalkyl substances (PFAS) comprise \u3e10 000 synthetic compounds that are globally distributed and highly persistent but remain challenging to monitor. Here we assess the utility of baleen─an accreting, keratinaceous tissue that baleen whales use for filter-feeding─to track PFAS dynamics in marine food webs. In six species investigated, PFAS were detected in all baleen tested (n = 18 plates, 220 samples, ∑10PFAS range of 0.02–60.5 ng/g of dry weight), at levels higher than those of other tissue types besides liver. Three of the species in our data set had not been tested for PFAS contamination previously, and two of those species (blue whale and North Atlantic right whale) are internationally endangered species. Apparent links were observed between PFAS and life-history events by testing successive subsamples along the growth axis of the baleen plates. These results establish baleen as a viable sample matrix for assessing PFAS contamination in marine ecosystems by enabling multiyear time-series analyses through single-tissue sampling with seasonal resolution
Fast and Furious: Energetic Tradeoffs and Scaling of High-Speed Foraging in Rorqual Whales
Although gigantic body size and obligate filter feeding mechanisms have evolved in multiple vertebrate lineages (mammals and fishes), intermittent ram (lunge) filter feeding is unique to a specific family of baleen whales: rorquals. Lunge feeding is a high cost, high benefit feeding mechanism that requires the integration of unsteady locomotion (i.e., accelerations and maneuvers); the impact of scale on the biomechanics and energetics of this foraging mode continues to be the subject of intense study. The goal of our investigation was to use a combination of multi-sensor tags paired with UAS footage to determine the impact of morphometrics such as body size on kinematic lunging parameters such as fluking timing, maximum lunging speed, and deceleration during the engulfment period for a range of species from minke to blue whales. Our results show that, in the case of krill-feeding lunges and regardless of size, animals exhibit a skewed gradient between powered and fully unpowered engulfment, with fluking generally ending at the point of both the maximum lunging speed and mouth opening. In all cases, the small amounts of propulsive thrust generated by the tail were unable to overcome the high drag forces experienced during engulfment. Assuming this thrust to be minimal, we predicted the minimum speed of lunging across scale. To minimize the energetic cost of lunge feeding, hydrodynamic theory predicts slower lunge feeding speeds regardless of body size, with a lower boundary set by the ability of the prey to avoid capture. We used empirical data to test this theory and instead found that maximum foraging speeds remain constant and high (∼4 m s–1) across body size, even as higher speeds result in lower foraging efficiency. Regardless, we found an increasing relationship between body size and this foraging efficiency, estimated as the ratio of energetic gain from prey to energetic cost. This trend held across timescales ranging from a single lunge to a single day and suggests that larger whales are capturing more prey—and more energy—at a lower cost
Scaling of oscillatory kinematics and Froude efficiency in baleen whales
High efficiency lunate-tail swimming with high-aspect-ratio lifting surfaces has evolved in many vertebrate lineages, from fish to cetaceans. Baleen whales (Mysticeti) are the largest swimming animals that exhibit this locomotor strategy, and present an ideal study system to examine how morphology and the kinematics of swimming scale to the largest body sizes. We used data from whale-borne inertial sensors coupled with morphometric measurements from aerial drones to calculate the hydrodynamic performance of oscillatory swimming in six baleen whale species ranging in body length from 5 to 25 m (fin whale, Balaenoptera physalus; Bryde\u27s whale, Balaenoptera edeni; sei whale, Balaenoptera borealis; Antarctic minke whale, Balaenoptera bonaerensis; humpback whale, Megaptera novaeangliae; and blue whale, Balaenoptera musculus). We found that mass-specific thrust increased with both swimming speed and body size. Froude efficiency, defined as the ratio of useful power output to the rate of energy input (Sloop, 1978), generally increased with swimming speed but decreased on average with increasing body size. This finding is contrary to previous results in smaller animals, where Froude efficiency increased with body size. Although our empirically parameterized estimates for swimming baleen whale drag were higher than those of a simple gliding model, oscillatory locomotion at this scale exhibits generally high Froude efficiency as in other adept swimmers. Our results quantify the fine-scale kinematics and estimate the hydrodynamics of routine and energetically expensive swimming modes at the largest scale
Proton therapy and src family kinase inhibitor combined treatments on U87 human glioblastoma multiforme cell line
Glioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with an exiguous life expectancy. Standard treatments are not curative and the resistance to both chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT. In this study we investigated the radiosensitive effects of a new targeted compound, SRC inhibitor, named Si306, in combination with PT on the U87 glioblastoma cell line. Clonogenic survival assay, dose modifying factor calculation and linear-quadratic model were performed to evaluate radiosensitizing effects mediated by combination of the Si306 with PT. Gene expression profiling by microarray was also conducted after PT treatments alone or combined, to identify gene signatures as biomarkers of response to treatments. Our results indicate that the Si306 compound exhibits a radiosensitizing action on the U87 cells causing a synergic cytotoxic effect with PT. In addition, microarray data confirm the SRC role as the main Si306 target and highlights new genes modulated by the combined action of Si306 and PT. We suggest, the Si306 as a new candidate to treat GBM in combination with PT, overcoming resistance to conventional treatments
- …