156 research outputs found

    Short Communication Effects of short chain fatty acid (SCFA) supplementation on performance and egg characteristics of old breeder hens

    Get PDF
    A study was conducted to determine the effect of supplementing the diet of breeder hens with a short-chain fatty acid (SCFA) premix, containing 509 g fatty acid salts/kg of which 285 g were calcium butyrate, on their eggshell characteristics and the hatching percentage of the eggs. One thousand six hundred 66-week old White Bovans laying breeder hens were used in this experiment. They were housed in eight identical pens, each containing 200 birds, and four pens were used per treatment. The SCFA premix was included at 1000 mg/kg in the treatment diet, and fed for a period of nine weeks. Responses were compared with an unsupplemented treatment. Supplementation started when the hens were 66 weeks old. From day 75 eggs were collected for the next seven weeks and the occurrence of cracked, dirty and misshapen eggs was recorded, and the hatching percentage of the eggs was determined. Eggshell strength was lower in eggs from the control (1.76 ± 0.05) than from the treatment group (2.07 ± 0.03). The percentage of eggs produced by the control group (68.6 ± 0.08) was significantly lower than that by the supplemented group (71.5 ± 0.15). Percentage of dirty, cracked and misshapen eggs, and the hatchability percentage of the control group (1.15 ± 0.03, 3.44 ± 0.05, 6.27 ± 0.03 and 88.93 ± 0.06, respectively) were also significantly lower than in the group receiving SCFA (0.47 ± 0.03, 2.21 ± 0.03, 3.81 ± 0.03 and 93.36 ± 0.05, respectively). It was concluded that dietary supplementation of SCFA to layer breeder hens from 66 weeks of age onwards improved eggshell strength, reduced the percentage of dirty, cracked and misshapen eggs and increased the hatching percentage of the eggs. The positive responses were suggested to be largely due to the butyrate in the SCFA. Keywords: Butyrate; SCFA; eggshell quality; hatching characteristics South African Journal of Animal Science Vol. 37 (3) 2007: pp.158-16

    Recent Developments and Characterization Techniques in 3D printing of Corneal Stroma Tissue

    Get PDF
    Corneal stroma has a significant function in normal visual function. The corneal stroma is vulnerable because of being the thickest part of the cornea, as it can be affected easily by infections or injuries. Any problems on corneal stroma can result in blindness. Donor shortage for corneal transplantation is one of the main issues in corneal transplantation. To address this issue, the corneal tissue engineering focuses on replacing injured tissues and repairing normal functions. Currently, there are no available, engineered corneal tissues for widely accepted routine clinical treatment, but new emerging 3D printing applications are being recognized as a promising option. Recent in vitro researches revealed that the biocompatibility and regeneration possessions of 3D-printed hydrogels outperformed conventional tissue engineering approaches. The goal of this review is to highlight the current developments in the characterization of 3D cell-free and bioprinted hydrogels

    3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering

    Get PDF
    In this study, a novel Polyvinyl Alcohol (PVA)/Hexagonal Boron Nitride (hBN)/Bacterial Cellulose (BC) composite, bone tissue scaffolds were fabricated using 3D printing technology. The printed scaffolds were characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), tensile testing, swelling behaviour, differential scanning calorimetry (DSC), and in vitro cell culture assay. Results demonstrated that bacterial cellulose addition affected the characteristic properties of the blends. Morphological studies revealed the homogenous dispersion of the bacterial cellulose within the 12 wt%PVA/0.25 wt%hBN matrix. Tensile strength of the scaffolds was decreased with the incorporation of BC and 12 wt%PVA/0.25 wt%hBN/0.5 wt%BC had the highest elongation at break value (93%). A significant increase in human osteoblast cell viability on 3D scaffolds was observed for 12 wt%PVA/0.25 wt%hBN/0.5 wt%BC. Cell morphology on composite scaffolds showed that bacterial cellulose doped scaffolds appeared to adhere to the cells. The present work deduced that bacterial cellulose doped 3D printed scaffolds with well-defined porous structures have considerable potential as a suitable tissue scaffold for bone tissue engineering (BTE)

    3D Printed Polycaprolactone/Gelatin/Bacterial Cellulose/Hydroxyapatite Composite Scaffold for Bone Tissue Engineering

    Get PDF
    Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (~300 ”m) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications

    A novel approach to treat the Thiel-Behnke corneal dystrophy using 3D printed honeycomb-shaped polymethylmethacrylate (PMMA)/Vancomycin (VAN) scaffolds

    Get PDF
    Thiel-Behnke corneal dystrophy, or honeycomb corneal dystrophy, is an autosomal dominant corneal disorder. Tissue engineering can be a novel approach to regenerate this dystrophy. In this study, the honeycomb geometry of the dystrophy mimicked with a 3D printing technology, and 40% PMMA, 40% PMMA/(0.1, 0.5, 2, and 10)% VAN scaffolds were fabricated with honeycomb geometry. As a result of the biocompatibility test with mesenchymal stem cells (MSCs), it can be said that cells on the scaffolds showed high viability and proliferation for all incubation periods. According to the antibacterial activity results, the 40% PMMA/10% VAN showed antibacterial activity against S. aureous. Mechanical results reported that with the addition of VAN into the 40% PMMA, the tensile strength value increased up to 2% VAN amount. The swelling behaviours of the scaffolds were examined in vitro, and found that the swelling rate increased with a high VAN amount. The release of VAN from the scaffolds showed sustained release behaviour, and it took 13 days to be released entirely from the scaffolds

    Gas and seismicity within the Istanbul seismic gap

    Get PDF
    Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the “Istanbul seismic gap”) has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic- driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5–5 km depth range, from where pressurized gas is expected to migrate along the MMF, up to the surface sediment layers. Hence, gas-related processes should also be considered for a complete interpretation of the micro- seismicity (~M < 3) within the Istanbul offshore domain

    Tajik Basin: A composite record of sedimentary basin evolution in response to tectonics in the Pamir

    Get PDF
    Investigation of a >6‐km‐thick succession of Cretaceous to Cenozoic sedimentary rocks in the Tajik Basin reveals that this depocentre consists of three stacked basin systems that are interpreted to reflect different mechanisms of subsidence associated with tectonics in the Pamir Mountains: a Lower to mid‐Cretaceous succession, an Upper Cretaceous–Lower Eocene succession and an Eocene–Neogene succession. The Lower to mid‐Cretaceous succession consists of fluvial deposits that were primarily derived from the Triassic Karakul–Mazar subduction–accretion complex in the northern Pamir. This succession is characterized by a convex‐up (accelerating) subsidence curve, thickens towards the Pamir and is interpreted as a retroarc foreland basin system associated with northward subduction of Tethyan oceanic lithosphere. The Upper Cretaceous to early Eocene succession consists of fine‐grained, marginal marine and sabkha deposits. The succession is characterized by a concave‐up subsidence curve. Regionally extensive limestone beds in the succession are consistent with late stage thermal relaxation and relative sea‐level rise following lithospheric extension, potentially in response to Tethyan slab rollback/foundering. The Upper Cretaceous–early Eocene succession is capped by a middle Eocene to early Oligocene (ca. 50–30 Ma) disconformity, which is interpreted to record the passage of a flexural forebulge. The disconformity is represented by a depositional hiatus, which is 10–30 Myr younger than estimates for the initiation of India–Asia collision and overlaps in age with the start of prograde metamorphism recorded in the Pamir gneiss domes. Overlying the disconformity, a >4‐km‐thick upper Eocene–Neogene succession displays a classic, coarsening upward unroofing sequence characterized by accelerating subsidence, which is interpreted as a retro‐foreland basin associated with crustal thickening of the Pamir during India–Asia collision. Thus, the Tajik Basin provides an example of a long‐lived composite basin in a retrowedge position that displays a sensitivity to plate margin processes. Subsidence, sediment accumulation and basin‐forming mechanisms are influenced by subduction dynamics, including periods of slab‐shallowing and retreat
    • 

    corecore