6,400 research outputs found

    Comment on "Clock Shift in High Field Magnetic Resonance of Atomic Hydrogen"

    Full text link
    In this Comment, we reanalyze the experiments on the collision frequency shift of the b-c and a-d hyperfine transitions in three-dimensional atomic hydrogen in the presence of, respectively, a and b-state atoms. Accurate consideration of the symmetry of the spatial and spin part of the diatomic wavefunction yields the difference a_T-a_S=0.30(5) \AA between the triplet and singlet s-wave scattering lengths of hydrogen atoms. This corrects the factor-of two error of the commented work [Phys. Rev. Lett. 101, 263003 (2008)].Comment: 1 pag

    Metallic and insulating behaviour of the two-dimensional electron gas on a vicinal surface of Si MOSFETs

    Full text link
    The resistance R of the 2DEG on the vicinal Si surface shows an unusual behaviour, which is very different from that in the (100) Si MOSFET where an unconventional metal to insulator transition has been reported. The crossover from the insulator with dR/dT0 occurs at a low resistance of R_{\Box}^c \sim 0.04h/e^2. At the low-temperature transition, which we attribute to the existence of a narrow impurity band at the interface, a distinct hysteresis in the resistance is detected. At higher temperatures, another change in the sign of dR/dT is seen and related to the crossover from the degenerate to non-degenerate 2DEG.Comment: 4 pages, 4 figure

    Thermal compression of two-dimensional atomic hydrogen to quantum degeneracy

    Full text link
    We describe experiments where 2D atomic hydrogen gas is compressed thermally at a small "cold spot" on the surface of superfluid helium and detected directly with electron-spin resonance. We reach surface densities up to 5e12 1/cm^2 at temperatures of approximately 100 mK corresponding to the maximum 2D phase-space density of about 1.5. By independent measurements of the surface density and its decay rate we make the first direct determination of the three-body recombination rate constant and get the value of 2e-25 cm^4/s for its upper bound, which is an order of magnitude smaller than previously reported experimental results.Comment: 4 pages, 4 postscript figures, bibliography (.bbl) file, submitted to PR

    Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain

    Full text link
    The interaction of coherent magnetization rotation with a system of two-level impurities is studied. Two different, but not contradictory mechanisms, the `slow-relaxing ion' and the `fast-relaxing ion' are utilized to derive a system of integro-differential equations for the magnetization. In the case that the impurity relaxation rate is much greater than the magnetization precession frequency, these equations can be written in the form of the Landau-Lifshitz equation with damping. Thus the damping parameter can be directly calculated from these microscopic impurity relaxation processes

    Shot Noise in Mesoscopic Transport Through Localised States

    Get PDF
    We show that shot noise can be used for studies of hopping and resonant tunnelling between localised electron states. In hopping via several states, shot noise is seen to be suppressed compared with its classical Poisson value SI=2eIS_I=2eI (II is the average current) and the suppression depends on the distribution of the barriers between the localised states. In resonant tunnelling through a single impurity an enhancement of shot noise is observed. It has been established, both theoretically and experimentally, that a considerable increase of noise occurs due to Coulomb interaction between two resonant tunnelling channels.Comment: 7 pages, 5 figures; Proceedings of the 10th Conference on Hopping and Related Phenomena (Trieste 2003); requires Wiley style files (included
    corecore